|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
from jax import random |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput |
|
from .scheduling_utils_flax import FlaxSchedulerMixin |
|
|
|
|
|
@flax.struct.dataclass |
|
class KarrasVeSchedulerState: |
|
|
|
num_inference_steps: Optional[int] = None |
|
timesteps: Optional[jnp.ndarray] = None |
|
schedule: Optional[jnp.ndarray] = None |
|
|
|
@classmethod |
|
def create(cls): |
|
return cls() |
|
|
|
|
|
@dataclass |
|
class FlaxKarrasVeOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
derivative (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): |
|
Derivative of predicted original image sample (x_0). |
|
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. |
|
""" |
|
|
|
prev_sample: jnp.ndarray |
|
derivative: jnp.ndarray |
|
state: KarrasVeSchedulerState |
|
|
|
|
|
class FlaxKarrasVeScheduler(FlaxSchedulerMixin, ConfigMixin): |
|
""" |
|
Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and |
|
the VE column of Table 1 from [1] for reference. |
|
|
|
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." |
|
https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic |
|
differential equations." https://arxiv.org/abs/2011.13456 |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of |
|
Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the |
|
optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper. |
|
|
|
Args: |
|
sigma_min (`float`): minimum noise magnitude |
|
sigma_max (`float`): maximum noise magnitude |
|
s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling. |
|
A reasonable range is [1.000, 1.011]. |
|
s_churn (`float`): the parameter controlling the overall amount of stochasticity. |
|
A reasonable range is [0, 100]. |
|
s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity). |
|
A reasonable range is [0, 10]. |
|
s_max (`float`): the end value of the sigma range where we add noise. |
|
A reasonable range is [0.2, 80]. |
|
""" |
|
|
|
@property |
|
def has_state(self): |
|
return True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sigma_min: float = 0.02, |
|
sigma_max: float = 100, |
|
s_noise: float = 1.007, |
|
s_churn: float = 80, |
|
s_min: float = 0.05, |
|
s_max: float = 50, |
|
): |
|
pass |
|
|
|
def create_state(self): |
|
return KarrasVeSchedulerState.create() |
|
|
|
def set_timesteps( |
|
self, state: KarrasVeSchedulerState, num_inference_steps: int, shape: Tuple = () |
|
) -> KarrasVeSchedulerState: |
|
""" |
|
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
state (`KarrasVeSchedulerState`): |
|
the `FlaxKarrasVeScheduler` state data class. |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
|
|
""" |
|
timesteps = jnp.arange(0, num_inference_steps)[::-1].copy() |
|
schedule = [ |
|
( |
|
self.config.sigma_max**2 |
|
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) |
|
) |
|
for i in timesteps |
|
] |
|
|
|
return state.replace( |
|
num_inference_steps=num_inference_steps, |
|
schedule=jnp.array(schedule, dtype=jnp.float32), |
|
timesteps=timesteps, |
|
) |
|
|
|
def add_noise_to_input( |
|
self, |
|
state: KarrasVeSchedulerState, |
|
sample: jnp.ndarray, |
|
sigma: float, |
|
key: jax.Array, |
|
) -> Tuple[jnp.ndarray, float]: |
|
""" |
|
Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a |
|
higher noise level sigma_hat = sigma_i + gamma_i*sigma_i. |
|
|
|
TODO Args: |
|
""" |
|
if self.config.s_min <= sigma <= self.config.s_max: |
|
gamma = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1) |
|
else: |
|
gamma = 0 |
|
|
|
|
|
key = random.split(key, num=1) |
|
eps = self.config.s_noise * random.normal(key=key, shape=sample.shape) |
|
sigma_hat = sigma + gamma * sigma |
|
sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) |
|
|
|
return sample_hat, sigma_hat |
|
|
|
def step( |
|
self, |
|
state: KarrasVeSchedulerState, |
|
model_output: jnp.ndarray, |
|
sigma_hat: float, |
|
sigma_prev: float, |
|
sample_hat: jnp.ndarray, |
|
return_dict: bool = True, |
|
) -> Union[FlaxKarrasVeOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. |
|
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. |
|
sigma_hat (`float`): TODO |
|
sigma_prev (`float`): TODO |
|
sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO |
|
return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] or `tuple`: Updated sample in the diffusion |
|
chain and derivative. [`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] if `return_dict` is |
|
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
""" |
|
|
|
pred_original_sample = sample_hat + sigma_hat * model_output |
|
derivative = (sample_hat - pred_original_sample) / sigma_hat |
|
sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative |
|
|
|
if not return_dict: |
|
return (sample_prev, derivative, state) |
|
|
|
return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state) |
|
|
|
def step_correct( |
|
self, |
|
state: KarrasVeSchedulerState, |
|
model_output: jnp.ndarray, |
|
sigma_hat: float, |
|
sigma_prev: float, |
|
sample_hat: jnp.ndarray, |
|
sample_prev: jnp.ndarray, |
|
derivative: jnp.ndarray, |
|
return_dict: bool = True, |
|
) -> Union[FlaxKarrasVeOutput, Tuple]: |
|
""" |
|
Correct the predicted sample based on the output model_output of the network. TODO complete description |
|
|
|
Args: |
|
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. |
|
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. |
|
sigma_hat (`float`): TODO |
|
sigma_prev (`float`): TODO |
|
sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO |
|
sample_prev (`torch.FloatTensor` or `np.ndarray`): TODO |
|
derivative (`torch.FloatTensor` or `np.ndarray`): TODO |
|
return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class |
|
|
|
Returns: |
|
prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO |
|
|
|
""" |
|
pred_original_sample = sample_prev + sigma_prev * model_output |
|
derivative_corr = (sample_prev - pred_original_sample) / sigma_prev |
|
sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) |
|
|
|
if not return_dict: |
|
return (sample_prev, derivative, state) |
|
|
|
return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state) |
|
|
|
def add_noise(self, state: KarrasVeSchedulerState, original_samples, noise, timesteps): |
|
raise NotImplementedError() |
|
|