import inspect from typing import Callable, Dict, List, Optional, Union import numpy as np import PIL import PIL.Image import torch from transformers import T5EncoderModel, T5Tokenizer from ...loaders import LoraLoaderMixin from ...models import Kandinsky3UNet, VQModel from ...schedulers import DDPMScheduler from ...utils import ( deprecate, is_accelerate_available, logging, replace_example_docstring, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import AutoPipelineForImage2Image >>> from diffusers.utils import load_image >>> import torch >>> pipe = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16) >>> pipe.enable_model_cpu_offload() >>> prompt = "A painting of the inside of a subway train with tiny raccoons." >>> image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png") >>> generator = torch.Generator(device="cpu").manual_seed(0) >>> image = pipe(prompt, image=image, strength=0.75, num_inference_steps=25, generator=generator).images[0] ``` """ def downscale_height_and_width(height, width, scale_factor=8): new_height = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 new_width = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def prepare_image(pil_image): arr = np.array(pil_image.convert("RGB")) arr = arr.astype(np.float32) / 127.5 - 1 arr = np.transpose(arr, [2, 0, 1]) image = torch.from_numpy(arr).unsqueeze(0) return image class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin): model_cpu_offload_seq = "text_encoder->movq->unet->movq" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", "negative_attention_mask", "attention_mask", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: Kandinsky3UNet, scheduler: DDPMScheduler, movq: VQModel, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq ) def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def remove_all_hooks(self): if is_accelerate_available(): from accelerate.hooks import remove_hook_from_module else: raise ImportError("Please install accelerate via `pip install accelerate`") for model in [self.text_encoder, self.unet]: if model is not None: remove_hook_from_module(model, recurse=True) self.unet_offload_hook = None self.text_encoder_offload_hook = None self.final_offload_hook = None def _process_embeds(self, embeddings, attention_mask, cut_context): # return embeddings, attention_mask if cut_context: embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0]) max_seq_length = attention_mask.sum(-1).max() + 1 embeddings = embeddings[:, :max_seq_length] attention_mask = attention_mask[:, :max_seq_length] return embeddings, attention_mask @torch.no_grad() def encode_prompt( self, prompt, do_classifier_free_guidance=True, num_images_per_prompt=1, device=None, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, _cut_context=False, attention_mask: Optional[torch.FloatTensor] = None, negative_attention_mask: Optional[torch.FloatTensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`, *optional*): torch device to place the resulting embeddings on num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. negative_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. """ if prompt is not None and negative_prompt is not None: if type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] max_length = 128 if prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids.to(device) attention_mask = text_inputs.attention_mask.to(device) prompt_embeds = self.text_encoder( text_input_ids, attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] prompt_embeds, attention_mask = self._process_embeds(prompt_embeds, attention_mask, _cut_context) prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2) if self.text_encoder is not None: dtype = self.text_encoder.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) attention_mask = attention_mask.repeat(num_images_per_prompt, 1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt if negative_prompt is not None: uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=128, truncation=True, return_attention_mask=True, return_tensors="pt", ) text_input_ids = uncond_input.input_ids.to(device) negative_attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = self.text_encoder( text_input_ids, attention_mask=negative_attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]] negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]] negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2) else: negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_attention_mask = torch.zeros_like(attention_mask) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) if negative_prompt_embeds.shape != prompt_embeds.shape: negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes else: negative_prompt_embeds = None negative_attention_mask = None return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: init_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): init_latents = [ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = self.movq.encode(image).latent_dist.sample(generator) init_latents = self.movq.config.scaling_factor * init_latents init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, attention_mask=None, negative_attention_mask=None, ): if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if negative_prompt_embeds is not None and negative_attention_mask is None: raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`") if negative_prompt_embeds is not None and negative_attention_mask is not None: if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape: raise ValueError( "`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but" f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`" f" {negative_attention_mask.shape}." ) if prompt_embeds is not None and attention_mask is None: raise ValueError("Please provide `attention_mask` along with `prompt_embeds`") if prompt_embeds is not None and attention_mask is not None: if prompt_embeds.shape[:2] != attention_mask.shape: raise ValueError( "`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`" f" {attention_mask.shape}." ) @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None, strength: float = 0.3, num_inference_steps: int = 25, guidance_scale: float = 3.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, negative_attention_mask: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. strength (`float`, *optional*, defaults to 0.8): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 3.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. negative_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) cut_context = True # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs, attention_mask, negative_attention_mask, ) self._guidance_scale = guidance_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt( prompt, self.do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, _cut_context=cut_context, attention_mask=attention_mask, negative_attention_mask=negative_attention_mask, ) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool() if not isinstance(image, list): image = [image] if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) image = torch.cat([prepare_image(i) for i in image], dim=0) image = image.to(dtype=prompt_embeds.dtype, device=device) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) # 5. Prepare latents latents = self.movq.encode(image)["latents"] latents = latents.repeat_interleave(num_images_per_prompt, dim=0) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) latents = self.prepare_latents( latents, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator ) if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None: self.text_encoder_offload_hook.offload() # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, encoder_attention_mask=attention_mask, )[0] if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, generator=generator, ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) attention_mask = callback_outputs.pop("attention_mask", attention_mask) negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # post-processing if output_type not in ["pt", "np", "pil", "latent"]: raise ValueError( f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}" ) if not output_type == "latent": image = self.movq.decode(latents, force_not_quantize=True)["sample"] if output_type in ["np", "pil"]: image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) else: image = latents self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)