import copy import inspect from dataclasses import dataclass from typing import Callable, List, Optional, Union import numpy as np import PIL.Image import torch import torch.nn.functional as F from torch.nn.functional import grid_sample from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from ...image_processor import VaeImageProcessor from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, UNet2DConditionModel from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline from ..stable_diffusion import StableDiffusionSafetyChecker logger = logging.get_logger(__name__) # pylint: disable=invalid-name def rearrange_0(tensor, f): F, C, H, W = tensor.size() tensor = torch.permute(torch.reshape(tensor, (F // f, f, C, H, W)), (0, 2, 1, 3, 4)) return tensor def rearrange_1(tensor): B, C, F, H, W = tensor.size() return torch.reshape(torch.permute(tensor, (0, 2, 1, 3, 4)), (B * F, C, H, W)) def rearrange_3(tensor, f): F, D, C = tensor.size() return torch.reshape(tensor, (F // f, f, D, C)) def rearrange_4(tensor): B, F, D, C = tensor.size() return torch.reshape(tensor, (B * F, D, C)) class CrossFrameAttnProcessor: """ Cross frame attention processor. Each frame attends the first frame. Args: batch_size: The number that represents actual batch size, other than the frames. For example, calling unet with a single prompt and num_images_per_prompt=1, batch_size should be equal to 2, due to classifier-free guidance. """ def __init__(self, batch_size=2): self.batch_size = batch_size def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) query = attn.to_q(hidden_states) is_cross_attention = encoder_hidden_states is not None if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) # Cross Frame Attention if not is_cross_attention: video_length = key.size()[0] // self.batch_size first_frame_index = [0] * video_length # rearrange keys to have batch and frames in the 1st and 2nd dims respectively key = rearrange_3(key, video_length) key = key[:, first_frame_index] # rearrange values to have batch and frames in the 1st and 2nd dims respectively value = rearrange_3(value, video_length) value = value[:, first_frame_index] # rearrange back to original shape key = rearrange_4(key) value = rearrange_4(value) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states class CrossFrameAttnProcessor2_0: """ Cross frame attention processor with scaled_dot_product attention of Pytorch 2.0. Args: batch_size: The number that represents actual batch size, other than the frames. For example, calling unet with a single prompt and num_images_per_prompt=1, batch_size should be equal to 2, due to classifier-free guidance. """ def __init__(self, batch_size=2): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.batch_size = batch_size def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) inner_dim = hidden_states.shape[-1] if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) query = attn.to_q(hidden_states) is_cross_attention = encoder_hidden_states is not None if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) # Cross Frame Attention if not is_cross_attention: video_length = max(1, key.size()[0] // self.batch_size) first_frame_index = [0] * video_length # rearrange keys to have batch and frames in the 1st and 2nd dims respectively key = rearrange_3(key, video_length) key = key[:, first_frame_index] # rearrange values to have batch and frames in the 1st and 2nd dims respectively value = rearrange_3(value, video_length) value = value[:, first_frame_index] # rearrange back to original shape key = rearrange_4(key) value = rearrange_4(value) head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states @dataclass class TextToVideoPipelineOutput(BaseOutput): r""" Output class for zero-shot text-to-video pipeline. Args: images (`[List[PIL.Image.Image]`, `np.ndarray`]): List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. nsfw_content_detected (`[List[bool]]`): List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]] def coords_grid(batch, ht, wd, device): # Adapted from https://github.com/princeton-vl/RAFT/blob/master/core/utils/utils.py coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device)) coords = torch.stack(coords[::-1], dim=0).float() return coords[None].repeat(batch, 1, 1, 1) def warp_single_latent(latent, reference_flow): """ Warp latent of a single frame with given flow Args: latent: latent code of a single frame reference_flow: flow which to warp the latent with Returns: warped: warped latent """ _, _, H, W = reference_flow.size() _, _, h, w = latent.size() coords0 = coords_grid(1, H, W, device=latent.device).to(latent.dtype) coords_t0 = coords0 + reference_flow coords_t0[:, 0] /= W coords_t0[:, 1] /= H coords_t0 = coords_t0 * 2.0 - 1.0 coords_t0 = F.interpolate(coords_t0, size=(h, w), mode="bilinear") coords_t0 = torch.permute(coords_t0, (0, 2, 3, 1)) warped = grid_sample(latent, coords_t0, mode="nearest", padding_mode="reflection") return warped def create_motion_field(motion_field_strength_x, motion_field_strength_y, frame_ids, device, dtype): """ Create translation motion field Args: motion_field_strength_x: motion strength along x-axis motion_field_strength_y: motion strength along y-axis frame_ids: indexes of the frames the latents of which are being processed. This is needed when we perform chunk-by-chunk inference device: device dtype: dtype Returns: """ seq_length = len(frame_ids) reference_flow = torch.zeros((seq_length, 2, 512, 512), device=device, dtype=dtype) for fr_idx in range(seq_length): reference_flow[fr_idx, 0, :, :] = motion_field_strength_x * (frame_ids[fr_idx]) reference_flow[fr_idx, 1, :, :] = motion_field_strength_y * (frame_ids[fr_idx]) return reference_flow def create_motion_field_and_warp_latents(motion_field_strength_x, motion_field_strength_y, frame_ids, latents): """ Creates translation motion and warps the latents accordingly Args: motion_field_strength_x: motion strength along x-axis motion_field_strength_y: motion strength along y-axis frame_ids: indexes of the frames the latents of which are being processed. This is needed when we perform chunk-by-chunk inference latents: latent codes of frames Returns: warped_latents: warped latents """ motion_field = create_motion_field( motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, frame_ids=frame_ids, device=latents.device, dtype=latents.dtype, ) warped_latents = latents.clone().detach() for i in range(len(warped_latents)): warped_latents[i] = warp_single_latent(latents[i][None], motion_field[i][None]) return warped_latents class TextToVideoZeroPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin): r""" Pipeline for zero-shot text-to-video generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer (`CLIPTokenizer`): A [`~transformers.CLIPTokenizer`] to tokenize text. unet ([`UNet2DConditionModel`]): A [`UNet3DConditionModel`] to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`CLIPImageProcessor`]): A [`CLIPImageProcessor`] to extract features from generated images; used as inputs to the `safety_checker`. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) processor = ( CrossFrameAttnProcessor2_0(batch_size=2) if hasattr(F, "scaled_dot_product_attention") else CrossFrameAttnProcessor(batch_size=2) ) self.unet.set_attn_processor(processor) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) def forward_loop(self, x_t0, t0, t1, generator): """ Perform DDPM forward process from time t0 to t1. This is the same as adding noise with corresponding variance. Args: x_t0: Latent code at time t0. t0: Timestep at t0. t1: Timestamp at t1. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. Returns: x_t1: Forward process applied to x_t0 from time t0 to t1. """ eps = randn_tensor(x_t0.size(), generator=generator, dtype=x_t0.dtype, device=x_t0.device) alpha_vec = torch.prod(self.scheduler.alphas[t0:t1]) x_t1 = torch.sqrt(alpha_vec) * x_t0 + torch.sqrt(1 - alpha_vec) * eps return x_t1 def backward_loop( self, latents, timesteps, prompt_embeds, guidance_scale, callback, callback_steps, num_warmup_steps, extra_step_kwargs, cross_attention_kwargs=None, ): """ Perform backward process given list of time steps. Args: latents: Latents at time timesteps[0]. timesteps: Time steps along which to perform backward process. prompt_embeds: Pre-generated text embeddings. guidance_scale: A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. extra_step_kwargs: Extra_step_kwargs. cross_attention_kwargs: A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). num_warmup_steps: number of warmup steps. Returns: latents: Latents of backward process output at time timesteps[-1]. """ do_classifier_free_guidance = guidance_scale > 1.0 num_steps = (len(timesteps) - num_warmup_steps) // self.scheduler.order with self.progress_bar(total=num_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) return latents.clone().detach() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], video_length: Optional[int] = 8, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_videos_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, motion_field_strength_x: float = 12, motion_field_strength_y: float = 12, output_type: Optional[str] = "tensor", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, t0: int = 44, t1: int = 47, frame_ids: Optional[List[int]] = None, ): """ The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. video_length (`int`, *optional*, defaults to 8): The number of generated video frames. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in video generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"numpy"`): The output format of the generated video. Choose between `"latent"` and `"numpy"`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.TextToVideoPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. motion_field_strength_x (`float`, *optional*, defaults to 12): Strength of motion in generated video along x-axis. See the [paper](https://arxiv.org/abs/2303.13439), Sect. 3.3.1. motion_field_strength_y (`float`, *optional*, defaults to 12): Strength of motion in generated video along y-axis. See the [paper](https://arxiv.org/abs/2303.13439), Sect. 3.3.1. t0 (`int`, *optional*, defaults to 44): Timestep t0. Should be in the range [0, num_inference_steps - 1]. See the [paper](https://arxiv.org/abs/2303.13439), Sect. 3.3.1. t1 (`int`, *optional*, defaults to 47): Timestep t0. Should be in the range [t0 + 1, num_inference_steps - 1]. See the [paper](https://arxiv.org/abs/2303.13439), Sect. 3.3.1. frame_ids (`List[int]`, *optional*): Indexes of the frames that are being generated. This is used when generating longer videos chunk-by-chunk. Returns: [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.TextToVideoPipelineOutput`]: The output contains a `ndarray` of the generated video, when `output_type` != `"latent"`, otherwise a latent code of generated videos and a list of `bool`s indicating whether the corresponding generated video contains "not-safe-for-work" (nsfw) content.. """ assert video_length > 0 if frame_ids is None: frame_ids = list(range(video_length)) assert len(frame_ids) == video_length assert num_videos_per_prompt == 1 if isinstance(prompt, str): prompt = [prompt] if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] # Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # Check inputs. Raise error if not correct self.check_inputs(prompt, height, width, callback_steps) # Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # Encode input prompt prompt_embeds_tuple = self.encode_prompt( prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt ) prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) # Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_videos_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order # Perform the first backward process up to time T_1 x_1_t1 = self.backward_loop( timesteps=timesteps[: -t1 - 1], prompt_embeds=prompt_embeds, latents=latents, guidance_scale=guidance_scale, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=num_warmup_steps, ) scheduler_copy = copy.deepcopy(self.scheduler) # Perform the second backward process up to time T_0 x_1_t0 = self.backward_loop( timesteps=timesteps[-t1 - 1 : -t0 - 1], prompt_embeds=prompt_embeds, latents=x_1_t1, guidance_scale=guidance_scale, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=0, ) # Propagate first frame latents at time T_0 to remaining frames x_2k_t0 = x_1_t0.repeat(video_length - 1, 1, 1, 1) # Add motion in latents at time T_0 x_2k_t0 = create_motion_field_and_warp_latents( motion_field_strength_x=motion_field_strength_x, motion_field_strength_y=motion_field_strength_y, latents=x_2k_t0, frame_ids=frame_ids[1:], ) # Perform forward process up to time T_1 x_2k_t1 = self.forward_loop( x_t0=x_2k_t0, t0=timesteps[-t0 - 1].item(), t1=timesteps[-t1 - 1].item(), generator=generator, ) # Perform backward process from time T_1 to 0 x_1k_t1 = torch.cat([x_1_t1, x_2k_t1]) b, l, d = prompt_embeds.size() prompt_embeds = prompt_embeds[:, None].repeat(1, video_length, 1, 1).reshape(b * video_length, l, d) self.scheduler = scheduler_copy x_1k_0 = self.backward_loop( timesteps=timesteps[-t1 - 1 :], prompt_embeds=prompt_embeds, latents=x_1k_t1, guidance_scale=guidance_scale, callback=callback, callback_steps=callback_steps, extra_step_kwargs=extra_step_kwargs, num_warmup_steps=0, ) latents = x_1k_0 # manually for max memory savings if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.unet.to("cpu") torch.cuda.empty_cache() if output_type == "latent": image = latents has_nsfw_concept = None else: image = self.decode_latents(latents) # Run safety checker image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return TextToVideoPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds def decode_latents(self, latents): latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image