import numpy as np import torch import matplotlib.pyplot as plt import cv2 import sys sys.path.append("..") from segment_anything import sam_model_registry, SamPredictor def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30/255, 144/255, 255/255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_points(coords, labels, ax, marker_size=375): pos_points = coords[labels==1] neg_points = coords[labels==0] ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) sam_checkpoint = "./script/sam_vit_h_4b8939.pth" model_type = "vit_h" device = "cuda" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) sam.to(device=device) predictor = SamPredictor(sam) save_path = "./validation_demo/Demo/fish/" image = cv2.imread("./validation_demo/Demo/fish/demo.jpg") image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # image = cv2.resize(image,(512,256)) predictor.set_image(image) input_point = np.array([[714,250]]) input_label = np.array([1]) masks, scores, logits = predictor.predict( point_coords=input_point, point_labels=input_label, multimask_output=True, ) for i, (mask, score) in enumerate(zip(masks, scores)): h, w = mask.shape[-2:] # mask = (mask.reshape(h, w, 1) !=10) * 255 mask = mask.reshape(h, w, 1) * 255 cv2.imwrite(save_path+str(i)+"_fish2.jpg",mask) print(masks.shape) print(score)