# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import math import flax.linen as nn import jax import jax.numpy as jnp def _query_chunk_attention(query, key, value, precision, key_chunk_size: int = 4096): """Multi-head dot product attention with a limited number of queries.""" num_kv, num_heads, k_features = key.shape[-3:] v_features = value.shape[-1] key_chunk_size = min(key_chunk_size, num_kv) query = query / jnp.sqrt(k_features) @functools.partial(jax.checkpoint, prevent_cse=False) def summarize_chunk(query, key, value): attn_weights = jnp.einsum("...qhd,...khd->...qhk", query, key, precision=precision) max_score = jnp.max(attn_weights, axis=-1, keepdims=True) max_score = jax.lax.stop_gradient(max_score) exp_weights = jnp.exp(attn_weights - max_score) exp_values = jnp.einsum("...vhf,...qhv->...qhf", value, exp_weights, precision=precision) max_score = jnp.einsum("...qhk->...qh", max_score) return (exp_values, exp_weights.sum(axis=-1), max_score) def chunk_scanner(chunk_idx): # julienne key array key_chunk = jax.lax.dynamic_slice( operand=key, start_indices=[0] * (key.ndim - 3) + [chunk_idx, 0, 0], # [...,k,h,d] slice_sizes=list(key.shape[:-3]) + [key_chunk_size, num_heads, k_features], # [...,k,h,d] ) # julienne value array value_chunk = jax.lax.dynamic_slice( operand=value, start_indices=[0] * (value.ndim - 3) + [chunk_idx, 0, 0], # [...,v,h,d] slice_sizes=list(value.shape[:-3]) + [key_chunk_size, num_heads, v_features], # [...,v,h,d] ) return summarize_chunk(query, key_chunk, value_chunk) chunk_values, chunk_weights, chunk_max = jax.lax.map(f=chunk_scanner, xs=jnp.arange(0, num_kv, key_chunk_size)) global_max = jnp.max(chunk_max, axis=0, keepdims=True) max_diffs = jnp.exp(chunk_max - global_max) chunk_values *= jnp.expand_dims(max_diffs, axis=-1) chunk_weights *= max_diffs all_values = chunk_values.sum(axis=0) all_weights = jnp.expand_dims(chunk_weights, -1).sum(axis=0) return all_values / all_weights def jax_memory_efficient_attention( query, key, value, precision=jax.lax.Precision.HIGHEST, query_chunk_size: int = 1024, key_chunk_size: int = 4096 ): r""" Flax Memory-efficient multi-head dot product attention. https://arxiv.org/abs/2112.05682v2 https://github.com/AminRezaei0x443/memory-efficient-attention Args: query (`jnp.ndarray`): (batch..., query_length, head, query_key_depth_per_head) key (`jnp.ndarray`): (batch..., key_value_length, head, query_key_depth_per_head) value (`jnp.ndarray`): (batch..., key_value_length, head, value_depth_per_head) precision (`jax.lax.Precision`, *optional*, defaults to `jax.lax.Precision.HIGHEST`): numerical precision for computation query_chunk_size (`int`, *optional*, defaults to 1024): chunk size to divide query array value must divide query_length equally without remainder key_chunk_size (`int`, *optional*, defaults to 4096): chunk size to divide key and value array value must divide key_value_length equally without remainder Returns: (`jnp.ndarray`) with shape of (batch..., query_length, head, value_depth_per_head) """ num_q, num_heads, q_features = query.shape[-3:] def chunk_scanner(chunk_idx, _): # julienne query array query_chunk = jax.lax.dynamic_slice( operand=query, start_indices=([0] * (query.ndim - 3)) + [chunk_idx, 0, 0], # [...,q,h,d] slice_sizes=list(query.shape[:-3]) + [min(query_chunk_size, num_q), num_heads, q_features], # [...,q,h,d] ) return ( chunk_idx + query_chunk_size, # unused ignore it _query_chunk_attention( query=query_chunk, key=key, value=value, precision=precision, key_chunk_size=key_chunk_size ), ) _, res = jax.lax.scan( f=chunk_scanner, init=0, xs=None, length=math.ceil(num_q / query_chunk_size), # start counter # stop counter ) return jnp.concatenate(res, axis=-3) # fuse the chunked result back class FlaxAttention(nn.Module): r""" A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762 Parameters: query_dim (:obj:`int`): Input hidden states dimension heads (:obj:`int`, *optional*, defaults to 8): Number of heads dim_head (:obj:`int`, *optional*, defaults to 64): Hidden states dimension inside each head dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): enable memory efficient attention https://arxiv.org/abs/2112.05682 split_head_dim (`bool`, *optional*, defaults to `False`): Whether to split the head dimension into a new axis for the self-attention computation. In most cases, enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ query_dim: int heads: int = 8 dim_head: int = 64 dropout: float = 0.0 use_memory_efficient_attention: bool = False split_head_dim: bool = False dtype: jnp.dtype = jnp.float32 def setup(self): inner_dim = self.dim_head * self.heads self.scale = self.dim_head**-0.5 # Weights were exported with old names {to_q, to_k, to_v, to_out} self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q") self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k") self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v") self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0") self.dropout_layer = nn.Dropout(rate=self.dropout) def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = jnp.transpose(tensor, (0, 2, 1, 3)) tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = jnp.transpose(tensor, (0, 2, 1, 3)) tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def __call__(self, hidden_states, context=None, deterministic=True): context = hidden_states if context is None else context query_proj = self.query(hidden_states) key_proj = self.key(context) value_proj = self.value(context) if self.split_head_dim: b = hidden_states.shape[0] query_states = jnp.reshape(query_proj, (b, -1, self.heads, self.dim_head)) key_states = jnp.reshape(key_proj, (b, -1, self.heads, self.dim_head)) value_states = jnp.reshape(value_proj, (b, -1, self.heads, self.dim_head)) else: query_states = self.reshape_heads_to_batch_dim(query_proj) key_states = self.reshape_heads_to_batch_dim(key_proj) value_states = self.reshape_heads_to_batch_dim(value_proj) if self.use_memory_efficient_attention: query_states = query_states.transpose(1, 0, 2) key_states = key_states.transpose(1, 0, 2) value_states = value_states.transpose(1, 0, 2) # this if statement create a chunk size for each layer of the unet # the chunk size is equal to the query_length dimension of the deepest layer of the unet flatten_latent_dim = query_states.shape[-3] if flatten_latent_dim % 64 == 0: query_chunk_size = int(flatten_latent_dim / 64) elif flatten_latent_dim % 16 == 0: query_chunk_size = int(flatten_latent_dim / 16) elif flatten_latent_dim % 4 == 0: query_chunk_size = int(flatten_latent_dim / 4) else: query_chunk_size = int(flatten_latent_dim) hidden_states = jax_memory_efficient_attention( query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4 ) hidden_states = hidden_states.transpose(1, 0, 2) else: # compute attentions if self.split_head_dim: attention_scores = jnp.einsum("b t n h, b f n h -> b n f t", key_states, query_states) else: attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states) attention_scores = attention_scores * self.scale attention_probs = nn.softmax(attention_scores, axis=-1 if self.split_head_dim else 2) # attend to values if self.split_head_dim: hidden_states = jnp.einsum("b n f t, b t n h -> b f n h", attention_probs, value_states) b = hidden_states.shape[0] hidden_states = jnp.reshape(hidden_states, (b, -1, self.heads * self.dim_head)) else: hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) hidden_states = self.proj_attn(hidden_states) return self.dropout_layer(hidden_states, deterministic=deterministic) class FlaxBasicTransformerBlock(nn.Module): r""" A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in: https://arxiv.org/abs/1706.03762 Parameters: dim (:obj:`int`): Inner hidden states dimension n_heads (:obj:`int`): Number of heads d_head (:obj:`int`): Hidden states dimension inside each head dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate only_cross_attention (`bool`, defaults to `False`): Whether to only apply cross attention. dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): enable memory efficient attention https://arxiv.org/abs/2112.05682 split_head_dim (`bool`, *optional*, defaults to `False`): Whether to split the head dimension into a new axis for the self-attention computation. In most cases, enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. """ dim: int n_heads: int d_head: int dropout: float = 0.0 only_cross_attention: bool = False dtype: jnp.dtype = jnp.float32 use_memory_efficient_attention: bool = False split_head_dim: bool = False def setup(self): # self attention (or cross_attention if only_cross_attention is True) self.attn1 = FlaxAttention( self.dim, self.n_heads, self.d_head, self.dropout, self.use_memory_efficient_attention, self.split_head_dim, dtype=self.dtype, ) # cross attention self.attn2 = FlaxAttention( self.dim, self.n_heads, self.d_head, self.dropout, self.use_memory_efficient_attention, self.split_head_dim, dtype=self.dtype, ) self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype) self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) self.dropout_layer = nn.Dropout(rate=self.dropout) def __call__(self, hidden_states, context, deterministic=True): # self attention residual = hidden_states if self.only_cross_attention: hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic) else: hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic) hidden_states = hidden_states + residual # cross attention residual = hidden_states hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic) hidden_states = hidden_states + residual # feed forward residual = hidden_states hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic) hidden_states = hidden_states + residual return self.dropout_layer(hidden_states, deterministic=deterministic) class FlaxTransformer2DModel(nn.Module): r""" A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in: https://arxiv.org/pdf/1506.02025.pdf Parameters: in_channels (:obj:`int`): Input number of channels n_heads (:obj:`int`): Number of heads d_head (:obj:`int`): Hidden states dimension inside each head depth (:obj:`int`, *optional*, defaults to 1): Number of transformers block dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate use_linear_projection (`bool`, defaults to `False`): tbd only_cross_attention (`bool`, defaults to `False`): tbd dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` use_memory_efficient_attention (`bool`, *optional*, defaults to `False`): enable memory efficient attention https://arxiv.org/abs/2112.05682 split_head_dim (`bool`, *optional*, defaults to `False`): Whether to split the head dimension into a new axis for the self-attention computation. In most cases, enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL. """ in_channels: int n_heads: int d_head: int depth: int = 1 dropout: float = 0.0 use_linear_projection: bool = False only_cross_attention: bool = False dtype: jnp.dtype = jnp.float32 use_memory_efficient_attention: bool = False split_head_dim: bool = False def setup(self): self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5) inner_dim = self.n_heads * self.d_head if self.use_linear_projection: self.proj_in = nn.Dense(inner_dim, dtype=self.dtype) else: self.proj_in = nn.Conv( inner_dim, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) self.transformer_blocks = [ FlaxBasicTransformerBlock( inner_dim, self.n_heads, self.d_head, dropout=self.dropout, only_cross_attention=self.only_cross_attention, dtype=self.dtype, use_memory_efficient_attention=self.use_memory_efficient_attention, split_head_dim=self.split_head_dim, ) for _ in range(self.depth) ] if self.use_linear_projection: self.proj_out = nn.Dense(inner_dim, dtype=self.dtype) else: self.proj_out = nn.Conv( inner_dim, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.dropout) def __call__(self, hidden_states, context, deterministic=True): batch, height, width, channels = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if self.use_linear_projection: hidden_states = hidden_states.reshape(batch, height * width, channels) hidden_states = self.proj_in(hidden_states) else: hidden_states = self.proj_in(hidden_states) hidden_states = hidden_states.reshape(batch, height * width, channels) for transformer_block in self.transformer_blocks: hidden_states = transformer_block(hidden_states, context, deterministic=deterministic) if self.use_linear_projection: hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch, height, width, channels) else: hidden_states = hidden_states.reshape(batch, height, width, channels) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states + residual return self.dropout_layer(hidden_states, deterministic=deterministic) class FlaxFeedForward(nn.Module): r""" Flax module that encapsulates two Linear layers separated by a non-linearity. It is the counterpart of PyTorch's [`FeedForward`] class, with the following simplifications: - The activation function is currently hardcoded to a gated linear unit from: https://arxiv.org/abs/2002.05202 - `dim_out` is equal to `dim`. - The number of hidden dimensions is hardcoded to `dim * 4` in [`FlaxGELU`]. Parameters: dim (:obj:`int`): Inner hidden states dimension dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ dim: int dropout: float = 0.0 dtype: jnp.dtype = jnp.float32 def setup(self): # The second linear layer needs to be called # net_2 for now to match the index of the Sequential layer self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype) self.net_2 = nn.Dense(self.dim, dtype=self.dtype) def __call__(self, hidden_states, deterministic=True): hidden_states = self.net_0(hidden_states, deterministic=deterministic) hidden_states = self.net_2(hidden_states) return hidden_states class FlaxGEGLU(nn.Module): r""" Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. Parameters: dim (:obj:`int`): Input hidden states dimension dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ dim: int dropout: float = 0.0 dtype: jnp.dtype = jnp.float32 def setup(self): inner_dim = self.dim * 4 self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype) self.dropout_layer = nn.Dropout(rate=self.dropout) def __call__(self, hidden_states, deterministic=True): hidden_states = self.proj(hidden_states) hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2) return self.dropout_layer(hidden_linear * nn.gelu(hidden_gelu), deterministic=deterministic)