# Copyright 2023 The HuggingFace Team. All rights reserved. # `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from ..utils import USE_PEFT_BACKEND from .activations import get_activation from .attention_processor import SpatialNorm from .downsampling import ( # noqa Downsample1D, Downsample2D, FirDownsample2D, KDownsample2D, downsample_2d, ) from .lora import LoRACompatibleConv, LoRACompatibleLinear from .normalization import AdaGroupNorm from .upsampling import ( # noqa FirUpsample2D, KUpsample2D, Upsample1D, Upsample2D, upfirdn2d_native, upsample_2d, ) class ResnetBlock2D(nn.Module): r""" A Resnet block. Parameters: in_channels (`int`): The number of channels in the input. out_channels (`int`, *optional*, default to be `None`): The number of output channels for the first conv2d layer. If None, same as `in_channels`. dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. groups_out (`int`, *optional*, default to None): The number of groups to use for the second normalization layer. if set to None, same as `groups`. eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or "ada_group" for a stronger conditioning with scale and shift. kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. use_in_shortcut (`bool`, *optional*, default to `True`): If `True`, add a 1x1 nn.conv2d layer for skip-connection. up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the `conv_shortcut` output. conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. If None, same as `out_channels`. """ def __init__( self, *, in_channels: int, out_channels: Optional[int] = None, conv_shortcut: bool = False, dropout: float = 0.0, temb_channels: int = 512, groups: int = 32, groups_out: Optional[int] = None, pre_norm: bool = True, eps: float = 1e-6, non_linearity: str = "swish", skip_time_act: bool = False, time_embedding_norm: str = "default", # default, scale_shift, ada_group, spatial kernel: Optional[torch.FloatTensor] = None, output_scale_factor: float = 1.0, use_in_shortcut: Optional[bool] = None, up: bool = False, down: bool = False, conv_shortcut_bias: bool = True, conv_2d_out_channels: Optional[int] = None, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.up = up self.down = down self.output_scale_factor = output_scale_factor self.time_embedding_norm = time_embedding_norm self.skip_time_act = skip_time_act linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv if groups_out is None: groups_out = groups if self.time_embedding_norm == "ada_group": self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) elif self.time_embedding_norm == "spatial": self.norm1 = SpatialNorm(in_channels, temb_channels) else: self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: if self.time_embedding_norm == "default": self.time_emb_proj = linear_cls(temb_channels, out_channels) elif self.time_embedding_norm == "scale_shift": self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels) elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": self.time_emb_proj = None else: raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") else: self.time_emb_proj = None if self.time_embedding_norm == "ada_group": self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) elif self.time_embedding_norm == "spatial": self.norm2 = SpatialNorm(out_channels, temb_channels) else: self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) conv_2d_out_channels = conv_2d_out_channels or out_channels self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) self.nonlinearity = get_activation(non_linearity) self.upsample = self.downsample = None if self.up: if kernel == "fir": fir_kernel = (1, 3, 3, 1) self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) elif kernel == "sde_vp": self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") else: self.upsample = Upsample2D(in_channels, use_conv=False) elif self.down: if kernel == "fir": fir_kernel = (1, 3, 3, 1) self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) elif kernel == "sde_vp": self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) else: self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = conv_cls( in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias, ) def forward( self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor, scale: float = 1.0, ) -> torch.FloatTensor: hidden_states = input_tensor if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": hidden_states = self.norm1(hidden_states, temb) else: hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) if self.upsample is not None: # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: input_tensor = input_tensor.contiguous() hidden_states = hidden_states.contiguous() input_tensor = ( self.upsample(input_tensor, scale=scale) if isinstance(self.upsample, Upsample2D) else self.upsample(input_tensor) ) hidden_states = ( self.upsample(hidden_states, scale=scale) if isinstance(self.upsample, Upsample2D) else self.upsample(hidden_states) ) elif self.downsample is not None: input_tensor = ( self.downsample(input_tensor, scale=scale) if isinstance(self.downsample, Downsample2D) else self.downsample(input_tensor) ) hidden_states = ( self.downsample(hidden_states, scale=scale) if isinstance(self.downsample, Downsample2D) else self.downsample(hidden_states) ) hidden_states = self.conv1(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv1(hidden_states) if self.time_emb_proj is not None: if not self.skip_time_act: temb = self.nonlinearity(temb) temb = ( self.time_emb_proj(temb, scale)[:, :, None, None] if not USE_PEFT_BACKEND else self.time_emb_proj(temb)[:, :, None, None] ) if temb is not None and self.time_embedding_norm == "default": hidden_states = hidden_states + temb if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": hidden_states = self.norm2(hidden_states, temb) else: hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = ( self.conv_shortcut(input_tensor, scale) if not USE_PEFT_BACKEND else self.conv_shortcut(input_tensor) ) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor # unet_rl.py def rearrange_dims(tensor: torch.Tensor) -> torch.Tensor: if len(tensor.shape) == 2: return tensor[:, :, None] if len(tensor.shape) == 3: return tensor[:, :, None, :] elif len(tensor.shape) == 4: return tensor[:, :, 0, :] else: raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.") class Conv1dBlock(nn.Module): """ Conv1d --> GroupNorm --> Mish Parameters: inp_channels (`int`): Number of input channels. out_channels (`int`): Number of output channels. kernel_size (`int` or `tuple`): Size of the convolving kernel. n_groups (`int`, default `8`): Number of groups to separate the channels into. activation (`str`, defaults to `mish`): Name of the activation function. """ def __init__( self, inp_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], n_groups: int = 8, activation: str = "mish", ): super().__init__() self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2) self.group_norm = nn.GroupNorm(n_groups, out_channels) self.mish = get_activation(activation) def forward(self, inputs: torch.Tensor) -> torch.Tensor: intermediate_repr = self.conv1d(inputs) intermediate_repr = rearrange_dims(intermediate_repr) intermediate_repr = self.group_norm(intermediate_repr) intermediate_repr = rearrange_dims(intermediate_repr) output = self.mish(intermediate_repr) return output # unet_rl.py class ResidualTemporalBlock1D(nn.Module): """ Residual 1D block with temporal convolutions. Parameters: inp_channels (`int`): Number of input channels. out_channels (`int`): Number of output channels. embed_dim (`int`): Embedding dimension. kernel_size (`int` or `tuple`): Size of the convolving kernel. activation (`str`, defaults `mish`): It is possible to choose the right activation function. """ def __init__( self, inp_channels: int, out_channels: int, embed_dim: int, kernel_size: Union[int, Tuple[int, int]] = 5, activation: str = "mish", ): super().__init__() self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size) self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size) self.time_emb_act = get_activation(activation) self.time_emb = nn.Linear(embed_dim, out_channels) self.residual_conv = ( nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() ) def forward(self, inputs: torch.Tensor, t: torch.Tensor) -> torch.Tensor: """ Args: inputs : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x out_channels x horizon ] """ t = self.time_emb_act(t) t = self.time_emb(t) out = self.conv_in(inputs) + rearrange_dims(t) out = self.conv_out(out) return out + self.residual_conv(inputs) class TemporalConvLayer(nn.Module): """ Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from: https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016 Parameters: in_dim (`int`): Number of input channels. out_dim (`int`): Number of output channels. dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. """ def __init__( self, in_dim: int, out_dim: Optional[int] = None, dropout: float = 0.0, norm_num_groups: int = 32, ): super().__init__() out_dim = out_dim or in_dim self.in_dim = in_dim self.out_dim = out_dim # conv layers self.conv1 = nn.Sequential( nn.GroupNorm(norm_num_groups, in_dim), nn.SiLU(), nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0)), ) self.conv2 = nn.Sequential( nn.GroupNorm(norm_num_groups, out_dim), nn.SiLU(), nn.Dropout(dropout), nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), ) self.conv3 = nn.Sequential( nn.GroupNorm(norm_num_groups, out_dim), nn.SiLU(), nn.Dropout(dropout), nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), ) self.conv4 = nn.Sequential( nn.GroupNorm(norm_num_groups, out_dim), nn.SiLU(), nn.Dropout(dropout), nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), ) # zero out the last layer params,so the conv block is identity nn.init.zeros_(self.conv4[-1].weight) nn.init.zeros_(self.conv4[-1].bias) def forward(self, hidden_states: torch.Tensor, num_frames: int = 1) -> torch.Tensor: hidden_states = ( hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4) ) identity = hidden_states hidden_states = self.conv1(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.conv3(hidden_states) hidden_states = self.conv4(hidden_states) hidden_states = identity + hidden_states hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape( (hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:] ) return hidden_states class TemporalResnetBlock(nn.Module): r""" A Resnet block. Parameters: in_channels (`int`): The number of channels in the input. out_channels (`int`, *optional*, default to be `None`): The number of output channels for the first conv2d layer. If None, same as `in_channels`. temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. """ def __init__( self, in_channels: int, out_channels: Optional[int] = None, temb_channels: int = 512, eps: float = 1e-6, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels kernel_size = (3, 1, 1) padding = [k // 2 for k in kernel_size] self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=eps, affine=True) self.conv1 = nn.Conv3d( in_channels, out_channels, kernel_size=kernel_size, stride=1, padding=padding, ) if temb_channels is not None: self.time_emb_proj = nn.Linear(temb_channels, out_channels) else: self.time_emb_proj = None self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(0.0) self.conv2 = nn.Conv3d( out_channels, out_channels, kernel_size=kernel_size, stride=1, padding=padding, ) self.nonlinearity = get_activation("silu") self.use_in_shortcut = self.in_channels != out_channels self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = nn.Conv3d( in_channels, out_channels, kernel_size=1, stride=1, padding=0, ) def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor: hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) if self.time_emb_proj is not None: temb = self.nonlinearity(temb) temb = self.time_emb_proj(temb)[:, :, :, None, None] temb = temb.permute(0, 2, 1, 3, 4) hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = input_tensor + hidden_states return output_tensor # VideoResBlock class SpatioTemporalResBlock(nn.Module): r""" A SpatioTemporal Resnet block. Parameters: in_channels (`int`): The number of channels in the input. out_channels (`int`, *optional*, default to be `None`): The number of output channels for the first conv2d layer. If None, same as `in_channels`. temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the spatial resenet. temporal_eps (`float`, *optional*, defaults to `eps`): The epsilon to use for the temporal resnet. merge_factor (`float`, *optional*, defaults to `0.5`): The merge factor to use for the temporal mixing. merge_strategy (`str`, *optional*, defaults to `learned_with_images`): The merge strategy to use for the temporal mixing. switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`): If `True`, switch the spatial and temporal mixing. """ def __init__( self, in_channels: int, out_channels: Optional[int] = None, temb_channels: int = 512, eps: float = 1e-6, temporal_eps: Optional[float] = None, merge_factor: float = 0.5, merge_strategy="learned_with_images", switch_spatial_to_temporal_mix: bool = False, ): super().__init__() self.spatial_res_block = ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=eps, ) self.temporal_res_block = TemporalResnetBlock( in_channels=out_channels if out_channels is not None else in_channels, out_channels=out_channels if out_channels is not None else in_channels, temb_channels=temb_channels, eps=temporal_eps if temporal_eps is not None else eps, ) self.time_mixer = AlphaBlender( alpha=merge_factor, merge_strategy=merge_strategy, switch_spatial_to_temporal_mix=switch_spatial_to_temporal_mix, ) def forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, image_only_indicator: Optional[torch.Tensor] = None, ): num_frames = image_only_indicator.shape[-1] hidden_states = self.spatial_res_block(hidden_states, temb) batch_frames, channels, height, width = hidden_states.shape batch_size = batch_frames // num_frames hidden_states_mix = ( hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) ) hidden_states = ( hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) ) if temb is not None: temb = temb.reshape(batch_size, num_frames, -1) hidden_states = self.temporal_res_block(hidden_states, temb) hidden_states = self.time_mixer( x_spatial=hidden_states_mix, x_temporal=hidden_states, image_only_indicator=image_only_indicator, ) hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width) return hidden_states class AlphaBlender(nn.Module): r""" A module to blend spatial and temporal features. Parameters: alpha (`float`): The initial value of the blending factor. merge_strategy (`str`, *optional*, defaults to `learned_with_images`): The merge strategy to use for the temporal mixing. switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`): If `True`, switch the spatial and temporal mixing. """ strategies = ["learned", "fixed", "learned_with_images"] def __init__( self, alpha: float, merge_strategy: str = "learned_with_images", switch_spatial_to_temporal_mix: bool = False, ): super().__init__() self.merge_strategy = merge_strategy self.switch_spatial_to_temporal_mix = switch_spatial_to_temporal_mix # For TemporalVAE if merge_strategy not in self.strategies: raise ValueError(f"merge_strategy needs to be in {self.strategies}") if self.merge_strategy == "fixed": self.register_buffer("mix_factor", torch.Tensor([alpha])) elif self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images": self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))) else: raise ValueError(f"Unknown merge strategy {self.merge_strategy}") def get_alpha(self, image_only_indicator: torch.Tensor, ndims: int) -> torch.Tensor: if self.merge_strategy == "fixed": alpha = self.mix_factor elif self.merge_strategy == "learned": alpha = torch.sigmoid(self.mix_factor) elif self.merge_strategy == "learned_with_images": if image_only_indicator is None: raise ValueError("Please provide image_only_indicator to use learned_with_images merge strategy") alpha = torch.where( image_only_indicator.bool(), torch.ones(1, 1, device=image_only_indicator.device), torch.sigmoid(self.mix_factor)[..., None], ) # (batch, channel, frames, height, width) if ndims == 5: alpha = alpha[:, None, :, None, None] # (batch*frames, height*width, channels) elif ndims == 3: alpha = alpha.reshape(-1)[:, None, None] else: raise ValueError(f"Unexpected ndims {ndims}. Dimensions should be 3 or 5") else: raise NotImplementedError return alpha def forward( self, x_spatial: torch.Tensor, x_temporal: torch.Tensor, image_only_indicator: Optional[torch.Tensor] = None, ) -> torch.Tensor: alpha = self.get_alpha(image_only_indicator, x_spatial.ndim) alpha = alpha.to(x_spatial.dtype) if self.switch_spatial_to_temporal_mix: alpha = 1.0 - alpha x = alpha * x_spatial + (1.0 - alpha) * x_temporal return x