# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL.Image import torch from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection from ...models import PriorTransformer from ...schedulers import UnCLIPScheduler from ...utils import ( BaseOutput, logging, replace_example_docstring, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` """ EXAMPLE_INTERPOLATE_DOC_STRING = """ Examples: ```py >>> from diffusers import KandinskyPriorPipeline, KandinskyPipeline >>> from diffusers.utils import load_image >>> import PIL >>> import torch >>> from torchvision import transforms >>> pipe_prior = KandinskyPriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> img1 = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ) >>> img2 = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/starry_night.jpeg" ... ) >>> images_texts = ["a cat", img1, img2] >>> weights = [0.3, 0.3, 0.4] >>> image_emb, zero_image_emb = pipe_prior.interpolate(images_texts, weights) >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) >>> pipe.to("cuda") >>> image = pipe( ... "", ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=150, ... ).images[0] >>> image.save("starry_cat.png") ``` """ @dataclass class KandinskyPriorPipelineOutput(BaseOutput): """ Output class for KandinskyPriorPipeline. Args: image_embeds (`torch.FloatTensor`) clip image embeddings for text prompt negative_image_embeds (`List[PIL.Image.Image]` or `np.ndarray`) clip image embeddings for unconditional tokens """ image_embeds: Union[torch.FloatTensor, np.ndarray] negative_image_embeds: Union[torch.FloatTensor, np.ndarray] class KandinskyPriorPipeline(DiffusionPipeline): """ Pipeline for generating image prior for Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: prior ([`PriorTransformer`]): The canonincal unCLIP prior to approximate the image embedding from the text embedding. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen image-encoder. text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). scheduler ([`UnCLIPScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. """ _exclude_from_cpu_offload = ["prior"] model_cpu_offload_seq = "text_encoder->prior" def __init__( self, prior: PriorTransformer, image_encoder: CLIPVisionModelWithProjection, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, scheduler: UnCLIPScheduler, image_processor: CLIPImageProcessor, ): super().__init__() self.register_modules( prior=prior, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, image_encoder=image_encoder, image_processor=image_processor, ) @torch.no_grad() @replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING) def interpolate( self, images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]], weights: List[float], num_images_per_prompt: int = 1, num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, negative_prior_prompt: Optional[str] = None, negative_prompt: str = "", guidance_scale: float = 4.0, device=None, ): """ Function invoked when using the prior pipeline for interpolation. Args: images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`): list of prompts and images to guide the image generation. weights: (`List[float]`): list of weights for each condition in `images_and_prompts` num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. negative_prior_prompt (`str`, *optional*): The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. Examples: Returns: [`KandinskyPriorPipelineOutput`] or `tuple` """ device = device or self.device if len(images_and_prompts) != len(weights): raise ValueError( f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length" ) image_embeddings = [] for cond, weight in zip(images_and_prompts, weights): if isinstance(cond, str): image_emb = self( cond, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale, ).image_embeds elif isinstance(cond, (PIL.Image.Image, torch.Tensor)): if isinstance(cond, PIL.Image.Image): cond = ( self.image_processor(cond, return_tensors="pt") .pixel_values[0] .unsqueeze(0) .to(dtype=self.image_encoder.dtype, device=device) ) image_emb = self.image_encoder(cond)["image_embeds"] else: raise ValueError( f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}" ) image_embeddings.append(image_emb * weight) image_emb = torch.cat(image_embeddings).sum(dim=0, keepdim=True) out_zero = self( negative_prompt, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale, ) zero_image_emb = out_zero.negative_image_embeds if negative_prompt == "" else out_zero.image_embeds return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=zero_image_emb) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def get_zero_embed(self, batch_size=1, device=None): device = device or self.device zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to( device=device, dtype=self.image_encoder.dtype ) zero_image_emb = self.image_encoder(zero_img)["image_embeds"] zero_image_emb = zero_image_emb.repeat(batch_size, 1) return zero_image_emb def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, ): batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids text_mask = text_inputs.attention_mask.bool().to(device) untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder(text_input_ids.to(device)) prompt_embeds = text_encoder_output.text_embeds text_encoder_hidden_states = text_encoder_output.last_hidden_state prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) uncond_text_mask = uncond_input.attention_mask.bool().to(device) negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) seq_len = uncond_text_encoder_hidden_states.shape[1] uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) text_mask = torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_encoder_hidden_states, text_mask @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, guidance_scale: float = 4.0, output_type: Optional[str] = "pt", return_dict: bool = True, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. output_type (`str`, *optional*, defaults to `"pt"`): The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Examples: Returns: [`KandinskyPriorPipelineOutput`] or `tuple` """ if isinstance(prompt, str): prompt = [prompt] elif not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] elif not isinstance(negative_prompt, list) and negative_prompt is not None: raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") # if the negative prompt is defined we double the batch size to # directly retrieve the negative prompt embedding if negative_prompt is not None: prompt = prompt + negative_prompt negative_prompt = 2 * negative_prompt device = self._execution_device batch_size = len(prompt) batch_size = batch_size * num_images_per_prompt do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) # prior self.scheduler.set_timesteps(num_inference_steps, device=device) prior_timesteps_tensor = self.scheduler.timesteps embedding_dim = self.prior.config.embedding_dim latents = self.prepare_latents( (batch_size, embedding_dim), prompt_embeds.dtype, device, generator, latents, self.scheduler, ) for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents predicted_image_embedding = self.prior( latent_model_input, timestep=t, proj_embedding=prompt_embeds, encoder_hidden_states=text_encoder_hidden_states, attention_mask=text_mask, ).predicted_image_embedding if do_classifier_free_guidance: predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) predicted_image_embedding = predicted_image_embedding_uncond + guidance_scale * ( predicted_image_embedding_text - predicted_image_embedding_uncond ) if i + 1 == prior_timesteps_tensor.shape[0]: prev_timestep = None else: prev_timestep = prior_timesteps_tensor[i + 1] latents = self.scheduler.step( predicted_image_embedding, timestep=t, sample=latents, generator=generator, prev_timestep=prev_timestep, ).prev_sample latents = self.prior.post_process_latents(latents) image_embeddings = latents # if negative prompt has been defined, we retrieve split the image embedding into two if negative_prompt is None: zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device) self.maybe_free_model_hooks() else: image_embeddings, zero_embeds = image_embeddings.chunk(2) if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.prior_hook.offload() if output_type not in ["pt", "np"]: raise ValueError(f"Only the output types `pt` and `np` are supported not output_type={output_type}") if output_type == "np": image_embeddings = image_embeddings.cpu().numpy() zero_embeds = zero_embeds.cpu().numpy() if not return_dict: return (image_embeddings, zero_embeds) return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds)