# Copyright 2023 Open AI and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass from typing import Dict, Optional, Tuple import numpy as np import torch import torch.nn.functional as F from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin from ...utils import BaseOutput from .camera import create_pan_cameras def sample_pmf(pmf: torch.Tensor, n_samples: int) -> torch.Tensor: r""" Sample from the given discrete probability distribution with replacement. The i-th bin is assumed to have mass pmf[i]. Args: pmf: [batch_size, *shape, n_samples, 1] where (pmf.sum(dim=-2) == 1).all() n_samples: number of samples Return: indices sampled with replacement """ *shape, support_size, last_dim = pmf.shape assert last_dim == 1 cdf = torch.cumsum(pmf.view(-1, support_size), dim=1) inds = torch.searchsorted(cdf, torch.rand(cdf.shape[0], n_samples, device=cdf.device)) return inds.view(*shape, n_samples, 1).clamp(0, support_size - 1) def posenc_nerf(x: torch.Tensor, min_deg: int = 0, max_deg: int = 15) -> torch.Tensor: """ Concatenate x and its positional encodings, following NeRF. Reference: https://arxiv.org/pdf/2210.04628.pdf """ if min_deg == max_deg: return x scales = 2.0 ** torch.arange(min_deg, max_deg, dtype=x.dtype, device=x.device) *shape, dim = x.shape xb = (x.reshape(-1, 1, dim) * scales.view(1, -1, 1)).reshape(*shape, -1) assert xb.shape[-1] == dim * (max_deg - min_deg) emb = torch.cat([xb, xb + math.pi / 2.0], axis=-1).sin() return torch.cat([x, emb], dim=-1) def encode_position(position): return posenc_nerf(position, min_deg=0, max_deg=15) def encode_direction(position, direction=None): if direction is None: return torch.zeros_like(posenc_nerf(position, min_deg=0, max_deg=8)) else: return posenc_nerf(direction, min_deg=0, max_deg=8) def _sanitize_name(x: str) -> str: return x.replace(".", "__") def integrate_samples(volume_range, ts, density, channels): r""" Function integrating the model output. Args: volume_range: Specifies the integral range [t0, t1] ts: timesteps density: torch.Tensor [batch_size, *shape, n_samples, 1] channels: torch.Tensor [batch_size, *shape, n_samples, n_channels] returns: channels: integrated rgb output weights: torch.Tensor [batch_size, *shape, n_samples, 1] (density *transmittance)[i] weight for each rgb output at [..., i, :]. transmittance: transmittance of this volume ) """ # 1. Calculate the weights _, _, dt = volume_range.partition(ts) ddensity = density * dt mass = torch.cumsum(ddensity, dim=-2) transmittance = torch.exp(-mass[..., -1, :]) alphas = 1.0 - torch.exp(-ddensity) Ts = torch.exp(torch.cat([torch.zeros_like(mass[..., :1, :]), -mass[..., :-1, :]], dim=-2)) # This is the probability of light hitting and reflecting off of # something at depth [..., i, :]. weights = alphas * Ts # 2. Integrate channels channels = torch.sum(channels * weights, dim=-2) return channels, weights, transmittance def volume_query_points(volume, grid_size): indices = torch.arange(grid_size**3, device=volume.bbox_min.device) zs = indices % grid_size ys = torch.div(indices, grid_size, rounding_mode="trunc") % grid_size xs = torch.div(indices, grid_size**2, rounding_mode="trunc") % grid_size combined = torch.stack([xs, ys, zs], dim=1) return (combined.float() / (grid_size - 1)) * (volume.bbox_max - volume.bbox_min) + volume.bbox_min def _convert_srgb_to_linear(u: torch.Tensor): return torch.where(u <= 0.04045, u / 12.92, ((u + 0.055) / 1.055) ** 2.4) def _create_flat_edge_indices( flat_cube_indices: torch.Tensor, grid_size: Tuple[int, int, int], ): num_xs = (grid_size[0] - 1) * grid_size[1] * grid_size[2] y_offset = num_xs num_ys = grid_size[0] * (grid_size[1] - 1) * grid_size[2] z_offset = num_xs + num_ys return torch.stack( [ # Edges spanning x-axis. flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2], flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] + (flat_cube_indices[:, 1] + 1) * grid_size[2] + flat_cube_indices[:, 2], flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2] + 1, flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] + (flat_cube_indices[:, 1] + 1) * grid_size[2] + flat_cube_indices[:, 2] + 1, # Edges spanning y-axis. ( y_offset + flat_cube_indices[:, 0] * (grid_size[1] - 1) * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2] ), ( y_offset + (flat_cube_indices[:, 0] + 1) * (grid_size[1] - 1) * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2] ), ( y_offset + flat_cube_indices[:, 0] * (grid_size[1] - 1) * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2] + 1 ), ( y_offset + (flat_cube_indices[:, 0] + 1) * (grid_size[1] - 1) * grid_size[2] + flat_cube_indices[:, 1] * grid_size[2] + flat_cube_indices[:, 2] + 1 ), # Edges spanning z-axis. ( z_offset + flat_cube_indices[:, 0] * grid_size[1] * (grid_size[2] - 1) + flat_cube_indices[:, 1] * (grid_size[2] - 1) + flat_cube_indices[:, 2] ), ( z_offset + (flat_cube_indices[:, 0] + 1) * grid_size[1] * (grid_size[2] - 1) + flat_cube_indices[:, 1] * (grid_size[2] - 1) + flat_cube_indices[:, 2] ), ( z_offset + flat_cube_indices[:, 0] * grid_size[1] * (grid_size[2] - 1) + (flat_cube_indices[:, 1] + 1) * (grid_size[2] - 1) + flat_cube_indices[:, 2] ), ( z_offset + (flat_cube_indices[:, 0] + 1) * grid_size[1] * (grid_size[2] - 1) + (flat_cube_indices[:, 1] + 1) * (grid_size[2] - 1) + flat_cube_indices[:, 2] ), ], dim=-1, ) class VoidNeRFModel(nn.Module): """ Implements the default empty space model where all queries are rendered as background. """ def __init__(self, background, channel_scale=255.0): super().__init__() background = nn.Parameter(torch.from_numpy(np.array(background)).to(dtype=torch.float32) / channel_scale) self.register_buffer("background", background) def forward(self, position): background = self.background[None].to(position.device) shape = position.shape[:-1] ones = [1] * (len(shape) - 1) n_channels = background.shape[-1] background = torch.broadcast_to(background.view(background.shape[0], *ones, n_channels), [*shape, n_channels]) return background @dataclass class VolumeRange: t0: torch.Tensor t1: torch.Tensor intersected: torch.Tensor def __post_init__(self): assert self.t0.shape == self.t1.shape == self.intersected.shape def partition(self, ts): """ Partitions t0 and t1 into n_samples intervals. Args: ts: [batch_size, *shape, n_samples, 1] Return: lower: [batch_size, *shape, n_samples, 1] upper: [batch_size, *shape, n_samples, 1] delta: [batch_size, *shape, n_samples, 1] where ts \\in [lower, upper] deltas = upper - lower """ mids = (ts[..., 1:, :] + ts[..., :-1, :]) * 0.5 lower = torch.cat([self.t0[..., None, :], mids], dim=-2) upper = torch.cat([mids, self.t1[..., None, :]], dim=-2) delta = upper - lower assert lower.shape == upper.shape == delta.shape == ts.shape return lower, upper, delta class BoundingBoxVolume(nn.Module): """ Axis-aligned bounding box defined by the two opposite corners. """ def __init__( self, *, bbox_min, bbox_max, min_dist: float = 0.0, min_t_range: float = 1e-3, ): """ Args: bbox_min: the left/bottommost corner of the bounding box bbox_max: the other corner of the bounding box min_dist: all rays should start at least this distance away from the origin. """ super().__init__() self.min_dist = min_dist self.min_t_range = min_t_range self.bbox_min = torch.tensor(bbox_min) self.bbox_max = torch.tensor(bbox_max) self.bbox = torch.stack([self.bbox_min, self.bbox_max]) assert self.bbox.shape == (2, 3) assert min_dist >= 0.0 assert min_t_range > 0.0 def intersect( self, origin: torch.Tensor, direction: torch.Tensor, t0_lower: Optional[torch.Tensor] = None, epsilon=1e-6, ): """ Args: origin: [batch_size, *shape, 3] direction: [batch_size, *shape, 3] t0_lower: Optional [batch_size, *shape, 1] lower bound of t0 when intersecting this volume. params: Optional meta parameters in case Volume is parametric epsilon: to stabilize calculations Return: A tuple of (t0, t1, intersected) where each has a shape [batch_size, *shape, 1]. If a ray intersects with the volume, `o + td` is in the volume for all t in [t0, t1]. If the volume is bounded, t1 is guaranteed to be on the boundary of the volume. """ batch_size, *shape, _ = origin.shape ones = [1] * len(shape) bbox = self.bbox.view(1, *ones, 2, 3).to(origin.device) def _safe_divide(a, b, epsilon=1e-6): return a / torch.where(b < 0, b - epsilon, b + epsilon) ts = _safe_divide(bbox - origin[..., None, :], direction[..., None, :], epsilon=epsilon) # Cases to think about: # # 1. t1 <= t0: the ray does not pass through the AABB. # 2. t0 < t1 <= 0: the ray intersects but the BB is behind the origin. # 3. t0 <= 0 <= t1: the ray starts from inside the BB # 4. 0 <= t0 < t1: the ray is not inside and intersects with the BB twice. # # 1 and 4 are clearly handled from t0 < t1 below. # Making t0 at least min_dist (>= 0) takes care of 2 and 3. t0 = ts.min(dim=-2).values.max(dim=-1, keepdim=True).values.clamp(self.min_dist) t1 = ts.max(dim=-2).values.min(dim=-1, keepdim=True).values assert t0.shape == t1.shape == (batch_size, *shape, 1) if t0_lower is not None: assert t0.shape == t0_lower.shape t0 = torch.maximum(t0, t0_lower) intersected = t0 + self.min_t_range < t1 t0 = torch.where(intersected, t0, torch.zeros_like(t0)) t1 = torch.where(intersected, t1, torch.ones_like(t1)) return VolumeRange(t0=t0, t1=t1, intersected=intersected) class StratifiedRaySampler(nn.Module): """ Instead of fixed intervals, a sample is drawn uniformly at random from each interval. """ def __init__(self, depth_mode: str = "linear"): """ :param depth_mode: linear samples ts linearly in depth. harmonic ensures closer points are sampled more densely. """ self.depth_mode = depth_mode assert self.depth_mode in ("linear", "geometric", "harmonic") def sample( self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int, epsilon: float = 1e-3, ) -> torch.Tensor: """ Args: t0: start time has shape [batch_size, *shape, 1] t1: finish time has shape [batch_size, *shape, 1] n_samples: number of ts to sample Return: sampled ts of shape [batch_size, *shape, n_samples, 1] """ ones = [1] * (len(t0.shape) - 1) ts = torch.linspace(0, 1, n_samples).view(*ones, n_samples).to(t0.dtype).to(t0.device) if self.depth_mode == "linear": ts = t0 * (1.0 - ts) + t1 * ts elif self.depth_mode == "geometric": ts = (t0.clamp(epsilon).log() * (1.0 - ts) + t1.clamp(epsilon).log() * ts).exp() elif self.depth_mode == "harmonic": # The original NeRF recommends this interpolation scheme for # spherical scenes, but there could be some weird edge cases when # the observer crosses from the inner to outer volume. ts = 1.0 / (1.0 / t0.clamp(epsilon) * (1.0 - ts) + 1.0 / t1.clamp(epsilon) * ts) mids = 0.5 * (ts[..., 1:] + ts[..., :-1]) upper = torch.cat([mids, t1], dim=-1) lower = torch.cat([t0, mids], dim=-1) # yiyi notes: add a random seed here for testing, don't forget to remove torch.manual_seed(0) t_rand = torch.rand_like(ts) ts = lower + (upper - lower) * t_rand return ts.unsqueeze(-1) class ImportanceRaySampler(nn.Module): """ Given the initial estimate of densities, this samples more from regions/bins expected to have objects. """ def __init__( self, volume_range: VolumeRange, ts: torch.Tensor, weights: torch.Tensor, blur_pool: bool = False, alpha: float = 1e-5, ): """ Args: volume_range: the range in which a ray intersects the given volume. ts: earlier samples from the coarse rendering step weights: discretized version of density * transmittance blur_pool: if true, use 2-tap max + 2-tap blur filter from mip-NeRF. alpha: small value to add to weights. """ self.volume_range = volume_range self.ts = ts.clone().detach() self.weights = weights.clone().detach() self.blur_pool = blur_pool self.alpha = alpha @torch.no_grad() def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor: """ Args: t0: start time has shape [batch_size, *shape, 1] t1: finish time has shape [batch_size, *shape, 1] n_samples: number of ts to sample Return: sampled ts of shape [batch_size, *shape, n_samples, 1] """ lower, upper, _ = self.volume_range.partition(self.ts) batch_size, *shape, n_coarse_samples, _ = self.ts.shape weights = self.weights if self.blur_pool: padded = torch.cat([weights[..., :1, :], weights, weights[..., -1:, :]], dim=-2) maxes = torch.maximum(padded[..., :-1, :], padded[..., 1:, :]) weights = 0.5 * (maxes[..., :-1, :] + maxes[..., 1:, :]) weights = weights + self.alpha pmf = weights / weights.sum(dim=-2, keepdim=True) inds = sample_pmf(pmf, n_samples) assert inds.shape == (batch_size, *shape, n_samples, 1) assert (inds >= 0).all() and (inds < n_coarse_samples).all() t_rand = torch.rand(inds.shape, device=inds.device) lower_ = torch.gather(lower, -2, inds) upper_ = torch.gather(upper, -2, inds) ts = lower_ + (upper_ - lower_) * t_rand ts = torch.sort(ts, dim=-2).values return ts @dataclass class MeshDecoderOutput(BaseOutput): """ A 3D triangle mesh with optional data at the vertices and faces. Args: verts (`torch.Tensor` of shape `(N, 3)`): array of vertext coordinates faces (`torch.Tensor` of shape `(N, 3)`): array of triangles, pointing to indices in verts. vertext_channels (Dict): vertext coordinates for each color channel """ verts: torch.Tensor faces: torch.Tensor vertex_channels: Dict[str, torch.Tensor] class MeshDecoder(nn.Module): """ Construct meshes from Signed distance functions (SDFs) using marching cubes method """ def __init__(self): super().__init__() cases = torch.zeros(256, 5, 3, dtype=torch.long) masks = torch.zeros(256, 5, dtype=torch.bool) self.register_buffer("cases", cases) self.register_buffer("masks", masks) def forward(self, field: torch.Tensor, min_point: torch.Tensor, size: torch.Tensor): """ For a signed distance field, produce a mesh using marching cubes. :param field: a 3D tensor of field values, where negative values correspond to the outside of the shape. The dimensions correspond to the x, y, and z directions, respectively. :param min_point: a tensor of shape [3] containing the point corresponding to (0, 0, 0) in the field. :param size: a tensor of shape [3] containing the per-axis distance from the (0, 0, 0) field corner and the (-1, -1, -1) field corner. """ assert len(field.shape) == 3, "input must be a 3D scalar field" dev = field.device cases = self.cases.to(dev) masks = self.masks.to(dev) min_point = min_point.to(dev) size = size.to(dev) grid_size = field.shape grid_size_tensor = torch.tensor(grid_size).to(size) # Create bitmasks between 0 and 255 (inclusive) indicating the state # of the eight corners of each cube. bitmasks = (field > 0).to(torch.uint8) bitmasks = bitmasks[:-1, :, :] | (bitmasks[1:, :, :] << 1) bitmasks = bitmasks[:, :-1, :] | (bitmasks[:, 1:, :] << 2) bitmasks = bitmasks[:, :, :-1] | (bitmasks[:, :, 1:] << 4) # Compute corner coordinates across the entire grid. corner_coords = torch.empty(*grid_size, 3, device=dev, dtype=field.dtype) corner_coords[range(grid_size[0]), :, :, 0] = torch.arange(grid_size[0], device=dev, dtype=field.dtype)[ :, None, None ] corner_coords[:, range(grid_size[1]), :, 1] = torch.arange(grid_size[1], device=dev, dtype=field.dtype)[ :, None ] corner_coords[:, :, range(grid_size[2]), 2] = torch.arange(grid_size[2], device=dev, dtype=field.dtype) # Compute all vertices across all edges in the grid, even though we will # throw some out later. We have (X-1)*Y*Z + X*(Y-1)*Z + X*Y*(Z-1) vertices. # These are all midpoints, and don't account for interpolation (which is # done later based on the used edge midpoints). edge_midpoints = torch.cat( [ ((corner_coords[:-1] + corner_coords[1:]) / 2).reshape(-1, 3), ((corner_coords[:, :-1] + corner_coords[:, 1:]) / 2).reshape(-1, 3), ((corner_coords[:, :, :-1] + corner_coords[:, :, 1:]) / 2).reshape(-1, 3), ], dim=0, ) # Create a flat array of [X, Y, Z] indices for each cube. cube_indices = torch.zeros( grid_size[0] - 1, grid_size[1] - 1, grid_size[2] - 1, 3, device=dev, dtype=torch.long ) cube_indices[range(grid_size[0] - 1), :, :, 0] = torch.arange(grid_size[0] - 1, device=dev)[:, None, None] cube_indices[:, range(grid_size[1] - 1), :, 1] = torch.arange(grid_size[1] - 1, device=dev)[:, None] cube_indices[:, :, range(grid_size[2] - 1), 2] = torch.arange(grid_size[2] - 1, device=dev) flat_cube_indices = cube_indices.reshape(-1, 3) # Create a flat array mapping each cube to 12 global edge indices. edge_indices = _create_flat_edge_indices(flat_cube_indices, grid_size) # Apply the LUT to figure out the triangles. flat_bitmasks = bitmasks.reshape(-1).long() # must cast to long for indexing to believe this not a mask local_tris = cases[flat_bitmasks] local_masks = masks[flat_bitmasks] # Compute the global edge indices for the triangles. global_tris = torch.gather(edge_indices, 1, local_tris.reshape(local_tris.shape[0], -1)).reshape( local_tris.shape ) # Select the used triangles for each cube. selected_tris = global_tris.reshape(-1, 3)[local_masks.reshape(-1)] # Now we have a bunch of indices into the full list of possible vertices, # but we want to reduce this list to only the used vertices. used_vertex_indices = torch.unique(selected_tris.view(-1)) used_edge_midpoints = edge_midpoints[used_vertex_indices] old_index_to_new_index = torch.zeros(len(edge_midpoints), device=dev, dtype=torch.long) old_index_to_new_index[used_vertex_indices] = torch.arange( len(used_vertex_indices), device=dev, dtype=torch.long ) # Rewrite the triangles to use the new indices faces = torch.gather(old_index_to_new_index, 0, selected_tris.view(-1)).reshape(selected_tris.shape) # Compute the actual interpolated coordinates corresponding to edge midpoints. v1 = torch.floor(used_edge_midpoints).to(torch.long) v2 = torch.ceil(used_edge_midpoints).to(torch.long) s1 = field[v1[:, 0], v1[:, 1], v1[:, 2]] s2 = field[v2[:, 0], v2[:, 1], v2[:, 2]] p1 = (v1.float() / (grid_size_tensor - 1)) * size + min_point p2 = (v2.float() / (grid_size_tensor - 1)) * size + min_point # The signs of s1 and s2 should be different. We want to find # t such that t*s2 + (1-t)*s1 = 0. t = (s1 / (s1 - s2))[:, None] verts = t * p2 + (1 - t) * p1 return MeshDecoderOutput(verts=verts, faces=faces, vertex_channels=None) @dataclass class MLPNeRFModelOutput(BaseOutput): density: torch.Tensor signed_distance: torch.Tensor channels: torch.Tensor ts: torch.Tensor class MLPNeRSTFModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, d_hidden: int = 256, n_output: int = 12, n_hidden_layers: int = 6, act_fn: str = "swish", insert_direction_at: int = 4, ): super().__init__() # Instantiate the MLP # Find out the dimension of encoded position and direction dummy = torch.eye(1, 3) d_posenc_pos = encode_position(position=dummy).shape[-1] d_posenc_dir = encode_direction(position=dummy).shape[-1] mlp_widths = [d_hidden] * n_hidden_layers input_widths = [d_posenc_pos] + mlp_widths output_widths = mlp_widths + [n_output] if insert_direction_at is not None: input_widths[insert_direction_at] += d_posenc_dir self.mlp = nn.ModuleList([nn.Linear(d_in, d_out) for d_in, d_out in zip(input_widths, output_widths)]) if act_fn == "swish": # self.activation = swish # yiyi testing: self.activation = lambda x: F.silu(x) else: raise ValueError(f"Unsupported activation function {act_fn}") self.sdf_activation = torch.tanh self.density_activation = torch.nn.functional.relu self.channel_activation = torch.sigmoid def map_indices_to_keys(self, output): h_map = { "sdf": (0, 1), "density_coarse": (1, 2), "density_fine": (2, 3), "stf": (3, 6), "nerf_coarse": (6, 9), "nerf_fine": (9, 12), } mapped_output = {k: output[..., start:end] for k, (start, end) in h_map.items()} return mapped_output def forward(self, *, position, direction, ts, nerf_level="coarse", rendering_mode="nerf"): h = encode_position(position) h_preact = h h_directionless = None for i, layer in enumerate(self.mlp): if i == self.config.insert_direction_at: # 4 in the config h_directionless = h_preact h_direction = encode_direction(position, direction=direction) h = torch.cat([h, h_direction], dim=-1) h = layer(h) h_preact = h if i < len(self.mlp) - 1: h = self.activation(h) h_final = h if h_directionless is None: h_directionless = h_preact activation = self.map_indices_to_keys(h_final) if nerf_level == "coarse": h_density = activation["density_coarse"] else: h_density = activation["density_fine"] if rendering_mode == "nerf": if nerf_level == "coarse": h_channels = activation["nerf_coarse"] else: h_channels = activation["nerf_fine"] elif rendering_mode == "stf": h_channels = activation["stf"] density = self.density_activation(h_density) signed_distance = self.sdf_activation(activation["sdf"]) channels = self.channel_activation(h_channels) # yiyi notes: I think signed_distance is not used return MLPNeRFModelOutput(density=density, signed_distance=signed_distance, channels=channels, ts=ts) class ChannelsProj(nn.Module): def __init__( self, *, vectors: int, channels: int, d_latent: int, ): super().__init__() self.proj = nn.Linear(d_latent, vectors * channels) self.norm = nn.LayerNorm(channels) self.d_latent = d_latent self.vectors = vectors self.channels = channels def forward(self, x: torch.Tensor) -> torch.Tensor: x_bvd = x w_vcd = self.proj.weight.view(self.vectors, self.channels, self.d_latent) b_vc = self.proj.bias.view(1, self.vectors, self.channels) h = torch.einsum("bvd,vcd->bvc", x_bvd, w_vcd) h = self.norm(h) h = h + b_vc return h class ShapEParamsProjModel(ModelMixin, ConfigMixin): """ project the latent representation of a 3D asset to obtain weights of a multi-layer perceptron (MLP). For more details, see the original paper: """ @register_to_config def __init__( self, *, param_names: Tuple[str] = ( "nerstf.mlp.0.weight", "nerstf.mlp.1.weight", "nerstf.mlp.2.weight", "nerstf.mlp.3.weight", ), param_shapes: Tuple[Tuple[int]] = ( (256, 93), (256, 256), (256, 256), (256, 256), ), d_latent: int = 1024, ): super().__init__() # check inputs if len(param_names) != len(param_shapes): raise ValueError("Must provide same number of `param_names` as `param_shapes`") self.projections = nn.ModuleDict({}) for k, (vectors, channels) in zip(param_names, param_shapes): self.projections[_sanitize_name(k)] = ChannelsProj( vectors=vectors, channels=channels, d_latent=d_latent, ) def forward(self, x: torch.Tensor): out = {} start = 0 for k, shape in zip(self.config.param_names, self.config.param_shapes): vectors, _ = shape end = start + vectors x_bvd = x[:, start:end] out[k] = self.projections[_sanitize_name(k)](x_bvd).reshape(len(x), *shape) start = end return out class ShapERenderer(ModelMixin, ConfigMixin): @register_to_config def __init__( self, *, param_names: Tuple[str] = ( "nerstf.mlp.0.weight", "nerstf.mlp.1.weight", "nerstf.mlp.2.weight", "nerstf.mlp.3.weight", ), param_shapes: Tuple[Tuple[int]] = ( (256, 93), (256, 256), (256, 256), (256, 256), ), d_latent: int = 1024, d_hidden: int = 256, n_output: int = 12, n_hidden_layers: int = 6, act_fn: str = "swish", insert_direction_at: int = 4, background: Tuple[float] = ( 255.0, 255.0, 255.0, ), ): super().__init__() self.params_proj = ShapEParamsProjModel( param_names=param_names, param_shapes=param_shapes, d_latent=d_latent, ) self.mlp = MLPNeRSTFModel(d_hidden, n_output, n_hidden_layers, act_fn, insert_direction_at) self.void = VoidNeRFModel(background=background, channel_scale=255.0) self.volume = BoundingBoxVolume(bbox_max=[1.0, 1.0, 1.0], bbox_min=[-1.0, -1.0, -1.0]) self.mesh_decoder = MeshDecoder() @torch.no_grad() def render_rays(self, rays, sampler, n_samples, prev_model_out=None, render_with_direction=False): """ Perform volumetric rendering over a partition of possible t's in the union of rendering volumes (written below with some abuse of notations) C(r) := sum( transmittance(t[i]) * integrate( lambda t: density(t) * channels(t) * transmittance(t), [t[i], t[i + 1]], ) for i in range(len(parts)) ) + transmittance(t[-1]) * void_model(t[-1]).channels where 1) transmittance(s) := exp(-integrate(density, [t[0], s])) calculates the probability of light passing through the volume specified by [t[0], s]. (transmittance of 1 means light can pass freely) 2) density and channels are obtained by evaluating the appropriate part.model at time t. 3) [t[i], t[i + 1]] is defined as the range of t where the ray intersects (parts[i].volume \\ union(part.volume for part in parts[:i])) at the surface of the shell (if bounded). If the ray does not intersect, the integral over this segment is evaluated as 0 and transmittance(t[i + 1]) := transmittance(t[i]). 4) The last term is integration to infinity (e.g. [t[-1], math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty). args: rays: [batch_size x ... x 2 x 3] origin and direction. sampler: disjoint volume integrals. n_samples: number of ts to sample. prev_model_outputs: model outputs from the previous rendering step, including :return: A tuple of - `channels` - A importance samplers for additional fine-grained rendering - raw model output """ origin, direction = rays[..., 0, :], rays[..., 1, :] # Integrate over [t[i], t[i + 1]] # 1 Intersect the rays with the current volume and sample ts to integrate along. vrange = self.volume.intersect(origin, direction, t0_lower=None) ts = sampler.sample(vrange.t0, vrange.t1, n_samples) ts = ts.to(rays.dtype) if prev_model_out is not None: # Append the previous ts now before fprop because previous # rendering used a different model and we can't reuse the output. ts = torch.sort(torch.cat([ts, prev_model_out.ts], dim=-2), dim=-2).values batch_size, *_shape, _t0_dim = vrange.t0.shape _, *ts_shape, _ts_dim = ts.shape # 2. Get the points along the ray and query the model directions = torch.broadcast_to(direction.unsqueeze(-2), [batch_size, *ts_shape, 3]) positions = origin.unsqueeze(-2) + ts * directions directions = directions.to(self.mlp.dtype) positions = positions.to(self.mlp.dtype) optional_directions = directions if render_with_direction else None model_out = self.mlp( position=positions, direction=optional_directions, ts=ts, nerf_level="coarse" if prev_model_out is None else "fine", ) # 3. Integrate the model results channels, weights, transmittance = integrate_samples( vrange, model_out.ts, model_out.density, model_out.channels ) # 4. Clean up results that do not intersect with the volume. transmittance = torch.where(vrange.intersected, transmittance, torch.ones_like(transmittance)) channels = torch.where(vrange.intersected, channels, torch.zeros_like(channels)) # 5. integration to infinity (e.g. [t[-1], math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty). channels = channels + transmittance * self.void(origin) weighted_sampler = ImportanceRaySampler(vrange, ts=model_out.ts, weights=weights) return channels, weighted_sampler, model_out @torch.no_grad() def decode_to_image( self, latents, device, size: int = 64, ray_batch_size: int = 4096, n_coarse_samples=64, n_fine_samples=128, ): # project the parameters from the generated latents projected_params = self.params_proj(latents) # update the mlp layers of the renderer for name, param in self.mlp.state_dict().items(): if f"nerstf.{name}" in projected_params.keys(): param.copy_(projected_params[f"nerstf.{name}"].squeeze(0)) # create cameras object camera = create_pan_cameras(size) rays = camera.camera_rays rays = rays.to(device) n_batches = rays.shape[1] // ray_batch_size coarse_sampler = StratifiedRaySampler() images = [] for idx in range(n_batches): rays_batch = rays[:, idx * ray_batch_size : (idx + 1) * ray_batch_size] # render rays with coarse, stratified samples. _, fine_sampler, coarse_model_out = self.render_rays(rays_batch, coarse_sampler, n_coarse_samples) # Then, render with additional importance-weighted ray samples. channels, _, _ = self.render_rays( rays_batch, fine_sampler, n_fine_samples, prev_model_out=coarse_model_out ) images.append(channels) images = torch.cat(images, dim=1) images = images.view(*camera.shape, camera.height, camera.width, -1).squeeze(0) return images @torch.no_grad() def decode_to_mesh( self, latents, device, grid_size: int = 128, query_batch_size: int = 4096, texture_channels: Tuple = ("R", "G", "B"), ): # 1. project the parameters from the generated latents projected_params = self.params_proj(latents) # 2. update the mlp layers of the renderer for name, param in self.mlp.state_dict().items(): if f"nerstf.{name}" in projected_params.keys(): param.copy_(projected_params[f"nerstf.{name}"].squeeze(0)) # 3. decoding with STF rendering # 3.1 query the SDF values at vertices along a regular 128**3 grid query_points = volume_query_points(self.volume, grid_size) query_positions = query_points[None].repeat(1, 1, 1).to(device=device, dtype=self.mlp.dtype) fields = [] for idx in range(0, query_positions.shape[1], query_batch_size): query_batch = query_positions[:, idx : idx + query_batch_size] model_out = self.mlp( position=query_batch, direction=None, ts=None, nerf_level="fine", rendering_mode="stf" ) fields.append(model_out.signed_distance) # predicted SDF values fields = torch.cat(fields, dim=1) fields = fields.float() assert ( len(fields.shape) == 3 and fields.shape[-1] == 1 ), f"expected [meta_batch x inner_batch] SDF results, but got {fields.shape}" fields = fields.reshape(1, *([grid_size] * 3)) # create grid 128 x 128 x 128 # - force a negative border around the SDFs to close off all the models. full_grid = torch.zeros( 1, grid_size + 2, grid_size + 2, grid_size + 2, device=fields.device, dtype=fields.dtype, ) full_grid.fill_(-1.0) full_grid[:, 1:-1, 1:-1, 1:-1] = fields fields = full_grid # apply a differentiable implementation of Marching Cubes to construct meshs raw_meshes = [] mesh_mask = [] for field in fields: raw_mesh = self.mesh_decoder(field, self.volume.bbox_min, self.volume.bbox_max - self.volume.bbox_min) mesh_mask.append(True) raw_meshes.append(raw_mesh) mesh_mask = torch.tensor(mesh_mask, device=fields.device) max_vertices = max(len(m.verts) for m in raw_meshes) # 3.2. query the texture color head at each vertex of the resulting mesh. texture_query_positions = torch.stack( [m.verts[torch.arange(0, max_vertices) % len(m.verts)] for m in raw_meshes], dim=0, ) texture_query_positions = texture_query_positions.to(device=device, dtype=self.mlp.dtype) textures = [] for idx in range(0, texture_query_positions.shape[1], query_batch_size): query_batch = texture_query_positions[:, idx : idx + query_batch_size] texture_model_out = self.mlp( position=query_batch, direction=None, ts=None, nerf_level="fine", rendering_mode="stf" ) textures.append(texture_model_out.channels) # predict texture color textures = torch.cat(textures, dim=1) textures = _convert_srgb_to_linear(textures) textures = textures.float() # 3.3 augument the mesh with texture data assert len(textures.shape) == 3 and textures.shape[-1] == len( texture_channels ), f"expected [meta_batch x inner_batch x texture_channels] field results, but got {textures.shape}" for m, texture in zip(raw_meshes, textures): texture = texture[: len(m.verts)] m.vertex_channels = dict(zip(texture_channels, texture.unbind(-1))) return raw_meshes[0]