# Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from scipy import integrate from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete class LMSDiscreteSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar( num_diffusion_timesteps, max_beta=0.999, alpha_transform_type="cosine", ): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. Choose from `cosine` or `exp` Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ if alpha_transform_type == "cosine": def alpha_bar_fn(t): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(t): return math.exp(t * -12.0) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin): """ A linear multistep scheduler for discrete beta schedules. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.0001): The starting `beta` value of inference. beta_end (`float`, defaults to 0.02): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. use_karras_sigmas (`bool`, *optional*, defaults to `False`): Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, the sigmas are determined according to a sequence of noise levels {σi}. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. steps_offset (`int`, defaults to 0): An offset added to the inference steps. You can use a combination of `offset=1` and `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable Diffusion. """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, use_karras_sigmas: Optional[bool] = False, prediction_type: str = "epsilon", timestep_spacing: str = "linspace", steps_offset: int = 0, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas) # setable values self.num_inference_steps = None self.use_karras_sigmas = use_karras_sigmas self.set_timesteps(num_train_timesteps, None) self.derivatives = [] self.is_scale_input_called = False self._step_index = None self.sigmas.to("cpu") # to avoid too much CPU/GPU communication @property def init_noise_sigma(self): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 @property def step_index(self): """ The index counter for current timestep. It will increae 1 after each scheduler step. """ return self._step_index def scale_model_input( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] ) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): The input sample. timestep (`float` or `torch.FloatTensor`): The current timestep in the diffusion chain. Returns: `torch.FloatTensor`: A scaled input sample. """ if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] sample = sample / ((sigma**2 + 1) ** 0.5) self.is_scale_input_called = True return sample def get_lms_coefficient(self, order, t, current_order): """ Compute the linear multistep coefficient. Args: order (): t (): current_order (): """ def lms_derivative(tau): prod = 1.0 for k in range(order): if current_order == k: continue prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k]) return prod integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0] return integrated_coeff def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[ ::-1 ].copy() elif self.config.timestep_spacing == "leading": step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": step_ratio = self.config.num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) log_sigmas = np.log(sigmas) sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) if self.use_karras_sigmas: sigmas = self._convert_to_karras(in_sigmas=sigmas) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas).to(device=device) self.timesteps = torch.from_numpy(timesteps).to(device=device) self._step_index = None self.sigmas.to("cpu") # to avoid too much CPU/GPU communication self.derivatives = [] # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index def _init_step_index(self, timestep): if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) index_candidates = (self.timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(index_candidates) > 1: step_index = index_candidates[1] else: step_index = index_candidates[0] self._step_index = step_index.item() # copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low = log_sigmas[low_idx] high = log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = np.clip(w, 0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t # copied from diffusers.schedulers.scheduling_euler_discrete._convert_to_karras def _convert_to_karras(self, in_sigmas: torch.FloatTensor) -> torch.FloatTensor: """Constructs the noise schedule of Karras et al. (2022).""" sigma_min: float = in_sigmas[-1].item() sigma_max: float = in_sigmas[0].item() rho = 7.0 # 7.0 is the value used in the paper ramp = np.linspace(0, 1, self.num_inference_steps) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas def step( self, model_output: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], sample: torch.FloatTensor, order: int = 4, return_dict: bool = True, ) -> Union[LMSDiscreteSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): The direct output from learned diffusion model. timestep (`float` or `torch.FloatTensor`): The current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): A current instance of a sample created by the diffusion process. order (`int`, defaults to 4): The order of the linear multistep method. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple. Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if not self.is_scale_input_called: warnings.warn( "The `scale_model_input` function should be called before `step` to ensure correct denoising. " "See `StableDiffusionPipeline` for a usage example." ) if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": pred_original_sample = sample - sigma * model_output elif self.config.prediction_type == "v_prediction": # * c_out + input * c_skip pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) elif self.config.prediction_type == "sample": pred_original_sample = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma self.derivatives.append(derivative) if len(self.derivatives) > order: self.derivatives.pop(0) # 3. Compute linear multistep coefficients order = min(self.step_index + 1, order) lms_coeffs = [self.get_lms_coefficient(order, self.step_index, curr_order) for curr_order in range(order)] # 4. Compute previous sample based on the derivatives path prev_sample = sample + sum( coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives)) ) # upon completion increase step index by one self._step_index += 1 if not return_dict: return (prev_sample,) return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.FloatTensor, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps