File size: 10,286 Bytes
5ca0a1c 613b97e 8335d37 5ca0a1c 613b97e 5ca0a1c 613b97e 8335d37 5ca0a1c 613b97e 5ca0a1c 6ecadee 5ca0a1c 8335d37 5ca0a1c 8335d37 5ca0a1c badf5f8 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 8335d37 5ca0a1c 613b97e 5ca0a1c 8335d37 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 613b97e 5ca0a1c 8335d37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import whisper
import streamlit as st
from streamlit_lottie import st_lottie
from utils import write_vtt, write_srt
import ffmpeg
import requests
from typing import Iterator
from io import StringIO
import numpy as np
import pathlib
import os
import components.authenticate as authenticate
import torch
st.set_page_config(page_title="Auto Subtitled Video Generator", page_icon=":movie_camera:", layout="wide")
# Define a function that we can use to load lottie files from a link.
@st.cache(allow_output_mutation=True)
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
APP_DIR = pathlib.Path(__file__).parent.absolute()
LOCAL_DIR = APP_DIR / "local"
LOCAL_DIR.mkdir(exist_ok=True)
save_dir = LOCAL_DIR / "output"
save_dir.mkdir(exist_ok=True)
loaded_model = whisper.load_model("base")
current_size = "None"
col1, col2 = st.columns([1, 3])
with col1:
lottie = load_lottieurl("https://assets1.lottiefiles.com/packages/lf20_HjK9Ol.json")
st_lottie(lottie)
with col2:
st.write("""
## Auto Subtitled Video Generator
##### Upload a video file and get a video with subtitles.
###### âž If you want to transcribe the video in its original language, select the task as "Transcribe"
###### âž If you want to translate the subtitles to English, select the task as "Translate"
###### I recommend starting with the base model and then experimenting with the larger models, the small and medium models often work well. """)
@st.cache(allow_output_mutation=True)
def change_model(current_size, size):
torch.cuda.is_available()
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
if current_size != size:
loaded_model = whisper.load_model(size, device=DEVICE)
return loaded_model
else:
raise Exception("Model size is the same as the current size.")
@st.cache(allow_output_mutation=True)
def inferecence(loaded_model, uploaded_file, task):
with open(f"{save_dir}/input.mp4", "wb") as f:
f.write(uploaded_file.read())
audio = ffmpeg.input(f"{save_dir}/input.mp4")
audio = ffmpeg.output(audio, f"{save_dir}/output.wav", acodec="pcm_s16le", ac=1, ar="16k")
ffmpeg.run(audio, overwrite_output=True)
if task == "Transcribe":
options = dict(task="transcribe", best_of=5)
results = loaded_model.transcribe(f"{save_dir}/output.wav", **options)
vtt = getSubs(results["segments"], "vtt", 80)
srt = getSubs(results["segments"], "srt", 80)
lang = results["language"]
return results["text"], vtt, srt, lang
elif task == "Translate":
options = dict(task="translate", best_of=5)
results = loaded_model.transcribe(f"{save_dir}/output.wav", **options)
vtt = getSubs(results["segments"], "vtt", 80)
srt = getSubs(results["segments"], "srt", 80)
lang = results["language"]
return results["text"], vtt, srt, lang
else:
raise ValueError("Task not supported")
def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
segmentStream = StringIO()
if format == 'vtt':
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
elif format == 'srt':
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
else:
raise Exception("Unknown format " + format)
segmentStream.seek(0)
return segmentStream.read()
def generate_subtitled_video(video, audio, transcript):
video_file = ffmpeg.input(video)
audio_file = ffmpeg.input(audio)
ffmpeg.concat(video_file.filter("subtitles", transcript), audio_file, v=1, a=1).output("final.mp4").global_args('-report').run(quiet=True, overwrite_output=True)
video_with_subs = open("final.mp4", "rb")
return video_with_subs
def main():
size = st.selectbox("Select Model Size (The larger the model, the more accurate the transcription will be, but it will take longer)", ["tiny", "base", "small", "medium", "large"], index=1)
loaded_model = change_model(current_size, size)
st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} "
f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.")
input_file = st.file_uploader("Upload Video File", type=["mp4", "avi", "mov", "mkv"])
# get the name of the input_file
if input_file is not None:
filename = input_file.name[:-4]
else:
filename = None
task = st.selectbox("Select Task", ["Transcribe", "Translate"], index=0)
if task == "Transcribe":
if st.button("Transcribe"):
results = inferecence(loaded_model, input_file, task)
col3, col4 = st.columns(2)
col5, col6, col7, col8 = st.columns(4)
col9, col10 = st.columns(2)
with col3:
st.video(input_file)
with open("transcript.txt", "w+", encoding='utf8') as f:
f.writelines(results[0])
f.close()
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
datatxt = f.read()
with open("transcript.vtt", "w+",encoding='utf8') as f:
f.writelines(results[1])
f.close()
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
datavtt = f.read()
with open("transcript.srt", "w+",encoding='utf8') as f:
f.writelines(results[2])
f.close()
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
datasrt = f.read()
with col5:
st.download_button(label="Download Transcript (.txt)",
data=datatxt,
file_name="transcript.txt")
with col6:
st.download_button(label="Download Transcript (.vtt)",
data=datavtt,
file_name="transcript.vtt")
with col7:
st.download_button(label="Download Transcript (.srt)",
data=datasrt,
file_name="transcript.srt")
with col9:
st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
with col10:
st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")
with col4:
with st.spinner("Generating Subtitled Video"):
video_with_subs = generate_subtitled_video(f"{save_dir}/input.mp4", f"{save_dir}/output.wav", "transcript.srt")
st.video(video_with_subs)
st.snow()
with col8:
st.download_button(label="Download Video with Subtitles",
data=video_with_subs,
file_name=f"{filename}_with_subs.mp4")
elif task == "Translate":
if st.button("Translate to English"):
results = inferecence(loaded_model, input_file, task)
col3, col4 = st.columns(2)
col5, col6, col7, col8 = st.columns(4)
col9, col10 = st.columns(2)
with col3:
st.video(input_file)
with open("transcript.txt", "w+", encoding='utf8') as f:
f.writelines(results[0])
f.close()
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
datatxt = f.read()
with open("transcript.vtt", "w+",encoding='utf8') as f:
f.writelines(results[1])
f.close()
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
datavtt = f.read()
with open("transcript.srt", "w+",encoding='utf8') as f:
f.writelines(results[2])
f.close()
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
datasrt = f.read()
with col5:
st.download_button(label="Download Transcript (.txt)",
data=datatxt,
file_name="transcript.txt")
with col6:
st.download_button(label="Download Transcript (.vtt)",
data=datavtt,
file_name="transcript.vtt")
with col7:
st.download_button(label="Download Transcript (.srt)",
data=datasrt,
file_name="transcript.srt")
with col9:
st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
with col10:
st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")
with col4:
with st.spinner("Generating Subtitled Video"):
video_with_subs = generate_subtitled_video(f"{save_dir}/input.mp4", f"{save_dir}/output.wav", "transcript.srt")
st.video(video_with_subs)
st.snow()
with col8:
st.download_button(label="Download Video with Subtitles",
data=video_with_subs,
file_name=f"{filename}_with_subs.mp4")
else:
st.error("Please select a task.")
if __name__ == "__main__":
authenticate.set_st_state_vars()
if st.session_state["authenticated"]:
main()
authenticate.button_logout()
else:
st.info("Please log in or sign up to use the app.")
authenticate.button_login() |