File size: 10,085 Bytes
5ca0a1c
f13254e
 
5ca0a1c
 
 
 
 
 
 
 
 
 
 
f13254e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca0a1c
 
 
 
 
 
 
 
 
f13254e
 
 
 
 
 
 
 
 
5ca0a1c
 
 
0e88dcb
5ca0a1c
 
 
 
 
 
 
 
 
 
 
f2e6af2
f13254e
 
5ca0a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e6af2
f13254e
 
5ca0a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f13254e
 
5ca0a1c
 
 
 
0a8bf2e
5ca0a1c
 
 
f13254e
5ca0a1c
 
 
f13254e
 
5ca0a1c
 
 
 
 
 
 
f13254e
 
 
 
 
 
5ca0a1c
f13254e
5ca0a1c
 
 
 
613b97e
 
 
 
 
5ca0a1c
613b97e
 
 
 
 
f13254e
5ca0a1c
f13254e
 
5ca0a1c
 
f13254e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca0a1c
 
f13254e
 
5ca0a1c
 
 
 
 
 
 
 
f13254e
 
 
 
 
5ca0a1c
f13254e
5ca0a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f13254e
5ca0a1c
f13254e
 
5ca0a1c
 
f13254e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ca0a1c
f13254e
5ca0a1c
 
 
 
f13254e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import whisper
from pytubefix import YouTube
from pytubefix.cli import on_progress
import requests
import time
import streamlit as st
from streamlit_lottie import st_lottie
import numpy as np
import os
from typing import Iterator
from io import StringIO
from utils import write_vtt, write_srt
import ffmpeg
from languages import LANGUAGES
import torch
from zipfile import ZipFile
from io import BytesIO
import base64
import pathlib
import re

st.set_page_config(page_title="Auto Subtitled Video Generator", page_icon=":movie_camera:", layout="wide")

torch.cuda.is_available()
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Model options: tiny, base, small, medium, large
loaded_model = whisper.load_model("small", device=DEVICE)
current_size = "None"



# Define a function that we can use to load lottie files from a link.
def load_lottieurl(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()

APP_DIR = pathlib.Path(__file__).parent.absolute()

LOCAL_DIR = APP_DIR / "local_youtube"
LOCAL_DIR.mkdir(exist_ok=True)
save_dir = LOCAL_DIR / "output"
save_dir.mkdir(exist_ok=True)



col1, col2 = st.columns([1, 3])
with col1:
    lottie = load_lottieurl("https://assets8.lottiefiles.com/packages/lf20_jh9gfdye.json")
    st_lottie(lottie)

with col2:
    st.write("""
    ## Auto Subtitled Video Generator 
    ##### Input a YouTube video link and get a video with subtitles.
    ###### ➠ If you want to transcribe the video in its original language, select the task as "Transcribe"
    ###### ➠ If you want to translate the subtitles to English, select the task as "Translate" 
    ###### I recommend starting with the base model and then experimenting with the larger models, the small and medium models often work well. """)


def download_video(link):
    yt = YouTube(link, use_oauth=True, on_progress_callback=on_progress)
    ys = yt.streams.get_highest_resolution()
    video = ys.download(filename=f"{save_dir}/youtube_video.mp4")
    return video


def convert(seconds):
    return time.strftime("%H:%M:%S", time.gmtime(seconds))


def change_model(current_size, size):
    if current_size != size:
        loaded_model = whisper.load_model(size)
        return loaded_model
    else:
        raise Exception("Model size is the same as the current size.")


def inference(link, loaded_model, task):
    yt = YouTube(link, use_oauth=True, on_progress_callback=on_progress)
    ys = yt.streams.get_audio_only()
    path = ys.download(filename=f"{save_dir}/audio.mp3", mp3=True)
    if task == "Transcribe":
        options = dict(task="transcribe", best_of=5)
        results = loaded_model.transcribe(path, **options)
        vtt = getSubs(results["segments"], "vtt", 80)
        srt = getSubs(results["segments"], "srt", 80)
        lang = results["language"]
        return results["text"], vtt, srt, lang
    elif task == "Translate":
        options = dict(task="translate", best_of=5)
        results = loaded_model.transcribe(path, **options)
        vtt = getSubs(results["segments"], "vtt", 80)
        srt = getSubs(results["segments"], "srt", 80)
        lang = results["language"]
        return results["text"], vtt, srt, lang
    else:
        raise ValueError("Task not supported")


def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
    segmentStream = StringIO()

    if format == 'vtt':
        write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
    elif format == 'srt':
        write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
    else:
        raise Exception("Unknown format " + format)

    segmentStream.seek(0)
    return segmentStream.read()


def get_language_code(language):
    if language in LANGUAGES.keys():
        detected_language = LANGUAGES[language]
        return detected_language
    else:
        raise ValueError("Language not supported")


def generate_subtitled_video(video, audio, transcript):
    video_file = ffmpeg.input(video)
    audio_file = ffmpeg.input(audio)
    ffmpeg.concat(video_file.filter("subtitles", transcript), audio_file, v=1, a=1).output("youtube_sub.mp4").run(quiet=True, overwrite_output=True)
    video_with_subs = open("youtube_sub.mp4", "rb")
    return video_with_subs        
    

def main():
    size = st.selectbox("Select Model Size (The larger the model, the more accurate the transcription will be, but it will take longer)", ["tiny", "base", "small", "medium", "large-v3"], index=1)
    loaded_model = change_model(current_size, size)
    st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} "
        f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.")
    link = st.text_input("YouTube Link (The longer the video, the longer the processing time)", placeholder="Input YouTube link and press enter")
    task = st.selectbox("Select Task", ["Transcribe", "Translate"], index=0)
    if task == "Transcribe":
        if st.button("Transcribe"):
            with st.spinner("Transcribing the video..."):
                results = inference(link, loaded_model, task)
            video = download_video(link)
            lang = results[3]
            detected_language = get_language_code(lang)
                
            col3, col4 = st.columns(2)
            with col3:
                st.video(video)
            
            # Split result["text"]  on !,? and . , but save the punctuation
            sentences = re.split("([!?.])", results[0])
            # Join the punctuation back to the sentences
            sentences = ["".join(i) for i in zip(sentences[0::2], sentences[1::2])]
            text = "\n\n".join(sentences)
            with open("transcript.txt", "w+", encoding='utf8') as f:
                f.writelines(text)
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
                datatxt = f.read()
                
            with open("transcript.vtt", "w+",encoding='utf8') as f:
                f.writelines(results[1])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
                datavtt = f.read()
                
            with open("transcript.srt", "w+",encoding='utf8') as f:
                f.writelines(results[2])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
                datasrt = f.read()
  
            with col4:
                with st.spinner("Generating Subtitled Video"):
                    video_with_subs = generate_subtitled_video(video, f"{save_dir}/audio.mp3", "transcript.srt")
                st.video(video_with_subs)
                st.balloons()

            zipObj = ZipFile("YouTube_transcripts_and_video.zip", "w")
            zipObj.write("transcript.txt")
            zipObj.write("transcript.vtt")
            zipObj.write("transcript.srt")
            zipObj.write("youtube_sub.mp4")
            zipObj.close()
            ZipfileDotZip = "YouTube_transcripts_and_video.zip"
            with open(ZipfileDotZip, "rb") as f:
                datazip = f.read()
                b64 = base64.b64encode(datazip).decode()
                href = f"<a href=\"data:file/zip;base64,{b64}\" download='{ZipfileDotZip}'>\
        Download Transcripts and Video\
    </a>"
            st.markdown(href, unsafe_allow_html=True)
            
    elif task == "Translate":
        if st.button("Translate to English"):
            with st.spinner("Translating to English..."):
                results = inference(link, loaded_model, task)
            video = download_video(link)
            lang = results[3]
            detected_language = get_language_code(lang)
                
            col3, col4 = st.columns(2)
            with col3:
                st.video(video)
                
            # Split result["text"]  on !,? and . , but save the punctuation
            sentences = re.split("([!?.])", results[0])
            # Join the punctuation back to the sentences
            sentences = ["".join(i) for i in zip(sentences[0::2], sentences[1::2])]
            text = "\n\n".join(sentences)
            with open("transcript.txt", "w+", encoding='utf8') as f:
                f.writelines(text)
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
                datatxt = f.read()
                
            with open("transcript.vtt", "w+",encoding='utf8') as f:
                f.writelines(results[1])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
                datavtt = f.read()
                
            with open("transcript.srt", "w+",encoding='utf8') as f:
                f.writelines(results[2])
                f.close()
            with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
                datasrt = f.read()
                       
            with col4:
                with st.spinner("Generating Subtitled Video"):
                    video_with_subs = generate_subtitled_video(video, f"{save_dir}/audio.mp3", "transcript.srt")
                st.video(video_with_subs)
                st.balloons()
            
            zipObj = ZipFile("YouTube_transcripts_and_video.zip", "w")
            zipObj.write("transcript.txt")
            zipObj.write("transcript.vtt")
            zipObj.write("transcript.srt")
            zipObj.write("youtube_sub.mp4")
            zipObj.close()
            ZipfileDotZip = "YouTube_transcripts_and_video.zip"
            with open(ZipfileDotZip, "rb") as f:
                datazip = f.read()
                b64 = base64.b64encode(datazip).decode()
                href = f"<a href=\"data:file/zip;base64,{b64}\" download='{ZipfileDotZip}'>\
        Download Transcripts and Video\
    </a>"
            st.markdown(href, unsafe_allow_html=True)
            
    else:
        st.info("Please select a task.")


if __name__ == "__main__":
    main()