|
import whisper |
|
from pytube import YouTube |
|
import requests |
|
import time |
|
import streamlit as st |
|
from streamlit_lottie import st_lottie |
|
import numpy as np |
|
import os |
|
from typing import Iterator |
|
from io import StringIO |
|
from utils import write_vtt, write_srt |
|
import ffmpeg |
|
from languages import LANGUAGES |
|
|
|
st.set_page_config(page_title="Auto Subtitled Video Generator", page_icon=":movie_camera:", layout="wide") |
|
|
|
|
|
@st.cache() |
|
def load_lottieurl(url: str): |
|
r = requests.get(url) |
|
if r.status_code != 200: |
|
return None |
|
return r.json() |
|
|
|
col1, col2 = st.columns([1, 3]) |
|
with col1: |
|
lottie = load_lottieurl("https://assets8.lottiefiles.com/packages/lf20_jh9gfdye.json") |
|
st_lottie(lottie) |
|
|
|
with col2: |
|
st.write(""" |
|
## Auto Subtitled Video Generator |
|
##### Input a YouTube video link and get a video with subtitles. |
|
###### ➠ If you want to transcribe the video in its original language, select the task as "Transcribe" |
|
###### ➠ If you want to translate the subtitles to English, select the task as "Translate" |
|
###### I recommend starting with the base model and then experimenting with the larger models, the small and medium models often work well. """) |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def populate_metadata(link): |
|
yt = YouTube(link) |
|
author = yt.author |
|
title = yt.title |
|
description = yt.description |
|
thumbnail = yt.thumbnail_url |
|
length = yt.length |
|
views = yt.views |
|
return author, title, description, thumbnail, length, views |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def download_video(link): |
|
yt = YouTube(link) |
|
video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() |
|
return video |
|
|
|
|
|
def convert(seconds): |
|
return time.strftime("%H:%M:%S", time.gmtime(seconds)) |
|
|
|
|
|
loaded_model = whisper.load_model("base") |
|
current_size = "None" |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def change_model(current_size, size): |
|
if current_size != size: |
|
loaded_model = whisper.load_model(size) |
|
return loaded_model |
|
else: |
|
raise Exception("Model size is the same as the current size.") |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def inference(link, loaded_model, task): |
|
yt = YouTube(link) |
|
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp3") |
|
if task == "Transcribe": |
|
options = dict(task="transcribe", best_of=5) |
|
results = loaded_model.transcribe(path, **options) |
|
vtt = getSubs(results["segments"], "vtt", 80) |
|
srt = getSubs(results["segments"], "srt", 80) |
|
lang = results["language"] |
|
return results["text"], vtt, srt, lang |
|
elif task == "Translate": |
|
options = dict(task="translate", best_of=5) |
|
results = loaded_model.transcribe(path, **options) |
|
vtt = getSubs(results["segments"], "vtt", 80) |
|
srt = getSubs(results["segments"], "srt", 80) |
|
lang = results["language"] |
|
return results["text"], vtt, srt, lang |
|
else: |
|
raise ValueError("Task not supported") |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str: |
|
segmentStream = StringIO() |
|
|
|
if format == 'vtt': |
|
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth) |
|
elif format == 'srt': |
|
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth) |
|
else: |
|
raise Exception("Unknown format " + format) |
|
|
|
segmentStream.seek(0) |
|
return segmentStream.read() |
|
|
|
|
|
def get_language_code(language): |
|
if language in LANGUAGES.keys(): |
|
detected_language = LANGUAGES[language] |
|
return detected_language |
|
else: |
|
raise ValueError("Language not supported") |
|
|
|
|
|
def generate_subtitled_video(video, audio, transcript): |
|
video_file = ffmpeg.input(video) |
|
audio_file = ffmpeg.input(audio) |
|
ffmpeg.concat(video_file.filter("subtitles", transcript), audio_file, v=1, a=1).output("final.mp4").run(quiet=True, overwrite_output=True) |
|
video_with_subs = open("final.mp4", "rb") |
|
return video_with_subs |
|
|
|
|
|
def main(): |
|
size = st.selectbox("Select Model Size (The larger the model, the more accurate the transcription will be, but it will take longer)", ["tiny", "base", "small", "medium", "large"], index=1) |
|
loaded_model = change_model(current_size, size) |
|
st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} " |
|
f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.") |
|
link = st.text_input("YouTube Link (The longer the video, the longer the processing time)") |
|
task = st.selectbox("Select Task", ["Transcribe", "Translate"], index=0) |
|
if task == "Transcribe": |
|
if st.button("Transcribe"): |
|
author, title, description, thumbnail, length, views = populate_metadata(link) |
|
results = inference(link, loaded_model, task) |
|
video = download_video(link) |
|
lang = results[3] |
|
detected_language = get_language_code(lang) |
|
|
|
col3, col4 = st.columns(2) |
|
col5, col6, col7, col8 = st.columns(4) |
|
col9, col10 = st.columns(2) |
|
with col3: |
|
st.video(video) |
|
|
|
|
|
with open("transcript.txt", "w+", encoding='utf8') as f: |
|
f.writelines(results[0]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f: |
|
datatxt = f.read() |
|
|
|
with open("transcript.vtt", "w+",encoding='utf8') as f: |
|
f.writelines(results[1]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f: |
|
datavtt = f.read() |
|
|
|
with open("transcript.srt", "w+",encoding='utf8') as f: |
|
f.writelines(results[2]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f: |
|
datasrt = f.read() |
|
|
|
with col5: |
|
st.download_button(label="Download Transcript (.txt)", |
|
data=datatxt, |
|
file_name="transcript.txt") |
|
with col6: |
|
st.download_button(label="Download Transcript (.vtt)", |
|
data=datavtt, |
|
file_name="transcript.vtt") |
|
with col7: |
|
st.download_button(label="Download Transcript (.srt)", |
|
data=datasrt, |
|
file_name="transcript.srt") |
|
with col9: |
|
st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.") |
|
with col10: |
|
st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.") |
|
|
|
with col4: |
|
with st.spinner("Generating Subtitled Video "): |
|
video_with_subs = generate_subtitled_video(video, "audio.mp3", "transcript.srt") |
|
st.video(video_with_subs) |
|
st.balloons() |
|
with col8: |
|
st.download_button(label="Download Subtitled Video", |
|
data=video_with_subs, |
|
file_name=f"{title} with subtitles.mp4") |
|
elif task == "Translate": |
|
if st.button("Translate to English"): |
|
author, title, description, thumbnail, length, views = populate_metadata(link) |
|
results = inference(link, loaded_model, task) |
|
video = download_video(link) |
|
lang = results[3] |
|
detected_language = get_language_code(lang) |
|
|
|
col3, col4 = st.columns(2) |
|
col5, col6, col7, col8 = st.columns(4) |
|
col9, col10 = st.columns(2) |
|
with col3: |
|
st.video(video) |
|
|
|
|
|
with open("transcript.txt", "w+", encoding='utf8') as f: |
|
f.writelines(results[0]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f: |
|
datatxt = f.read() |
|
|
|
with open("transcript.vtt", "w+",encoding='utf8') as f: |
|
f.writelines(results[1]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f: |
|
datavtt = f.read() |
|
|
|
with open("transcript.srt", "w+",encoding='utf8') as f: |
|
f.writelines(results[2]) |
|
f.close() |
|
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f: |
|
datasrt = f.read() |
|
with col5: |
|
st.download_button(label="Download Transcript (.txt)", |
|
data=datatxt, |
|
file_name="transcript.txt") |
|
with col6: |
|
st.download_button(label="Download Transcript (.vtt)", |
|
data=datavtt, |
|
file_name="transcript.vtt") |
|
with col7: |
|
st.download_button(label="Download Transcript (.srt)", |
|
data=datasrt, |
|
file_name="transcript.srt") |
|
with col9: |
|
st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.") |
|
with col10: |
|
st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.") |
|
|
|
with col4: |
|
with st.spinner("Generating Subtitled Video "): |
|
video_with_subs = generate_subtitled_video(video, "audio.mp3", "transcript.srt") |
|
st.video(video_with_subs) |
|
st.balloons() |
|
with col8: |
|
st.download_button(label="Download Subtitled Video ", |
|
data=video_with_subs, |
|
file_name=f"{title} with subtitles.mp4") |
|
else: |
|
st.error("Please select a task.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
st.markdown("###### Made with :heart: by [@BatuhanYılmaz](https://github.com/BatuhanYilmaz26) [![this is an image link](https://i.imgur.com/thJhzOO.png)](https://www.buymeacoffee.com/batuhanylmz)") |