import streamlit as st import json import requests import time from newspaper import Article import nltk nltk.download('punkt') # Page title layout c1, c2 = st.columns([0.32, 2]) with c1: st.image("images/newspaper.png", width=85) with c2: st.title("Website Article Summarize") st.markdown("**Generate summaries of articles from websites using abstractive summarization with Language Model and Library NewsPaper.**") st.caption("Created by Bayhaqy.") # Sidebar content st.sidebar.subheader("About the app") st.sidebar.info("This app uses optional 🤗HuggingFace's Model [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) \ or [pegasus_indonesian_base-finetune](https://huggingface.co/pegasus_indonesian_base-finetune) model and Library NewsPaper.") st.sidebar.write("\n\n") st.sidebar.markdown("**Get a free API key from HuggingFace:**") st.sidebar.markdown("* Create a [free account](https://huggingface.co/join) or [login](https://huggingface.co/login)") st.sidebar.markdown("* Go to **Settings** and then **Access Tokens**") st.sidebar.markdown("* Create a new Token (select 'read' role)") st.sidebar.markdown("* Paste your API key in the text box") st.sidebar.divider() st.sidebar.write("Please make sure you choose the correct model and is not behind a paywall.") st.sidebar.write("\n\n") st.sidebar.divider() # Inputs st.subheader("Enter the URL of the article you want to summarize") default_url = "https://" url = st.text_input("URL:", default_url) headers_ = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36' } fetch_button = st.button("Fetch article") if fetch_button: article_url = url session = requests.Session() try: response_ = session.get(article_url, headers=headers_, timeout=10) if response_.status_code == 200: with st.spinner('Fetching your article...'): time.sleep(3) st.success('Your article is ready for summarization!') article = Article(url) article.download() article.parse() title = article.title text = article.text st.divider() st.subheader("Real Article") st.markdown(f"Your article: **{title}**") st.markdown(f"**{text}**") st.divider() else: st.write("Error occurred while fetching article.") except Exception as e: st.write(f"Error occurred while fetching article: {e}") # HuggingFace API KEY input API_KEY = st.text_input("Enter your HuggingFace API key", type="password") headers = {"Authorization": f"Bearer {API_KEY}"} # Selectbox to choose between API URLs selected_api_url = st.selectbox("Select Model", options=["bart-large-cnn", "pegasus_indonesian_base-finetune"]) # Determine the selected Model if selected_api_url == "bart-large-cnn": API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn" else: API_URL = "https://api-inference.huggingface.co/models/thonyyy/pegasus_indonesian_base-finetune" submit_button = st.button("Submit to Summarize") # Download and parse the article if submit_button: article = Article(url) article.download() article.parse() article.nlp() title = article.title text = article.text html = article.html summ = article.summary # HuggingFace API request function summary def query_sum(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() with st.spinner('Doing some AI magic, please wait...'): time.sleep(1) # Query the API Summary output_sum = query_sum({"inputs": text, }) # Display the results summary = output_sum[0]['summary_text'].replace('', " ") st.divider() st.subheader("Summary AI") st.markdown(f"Your article: **{title}**") st.markdown(f"**{summary}**") st.divider() st.subheader("Summary Library NewsPaper") st.markdown(f"Your article: **{title}**") st.markdown(f"**{summ}**") st.divider() st.subheader("Real Article") st.markdown(f"Your article: **{title}**") st.markdown(f"**{text}**")