File size: 1,862 Bytes
576483d
 
 
73df278
052823c
ee22789
 
975546a
ee22789
 
975546a
 
 
e95a739
576483d
303f68d
576483d
 
 
f16c19e
576483d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
052823c
576483d
 
 
 
 
 
 
 
 
 
 
 
f16c19e
576483d
 
 
 
 
 
 
ee22789
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
from groq import Groq 
import gradio as gr
from transformers import AutoModel, AutoConfig

hf_token = os.getenv("HF_TOKEN")  # Make sure you set this environment variable

try:
    config = AutoConfig.from_pretrained("HusseinEid/llama-3-chatbot", config_file_name="config.json", use_auth_token=hf_token)
    model = AutoModel.from_pretrained("HusseinEid/lora_model", config=config, use_auth_token=hf_token)
except OSError as e:
    print(f"Error: {e}")
    
client = Groq(api_key = os.environ.get("GROQ_API_KEY"), )


system_prompt = {
    "role": "system",
    "content":
    "You are a useful assistant. You reply with detailed answers. "
}

async def chat_groq(message, history):
    
    messages = [system_prompt]
    
    for msg in history:
        messages.append({"role": "user", "content": str(msg[0])})
        messages.append({"role": "assistant", "content": str(msg[1])})
        
    messages.append({"role": "user", "content": str (message)})
    
    response_content = ''
    
    stream = client. chat.completions.create(
                                            model=model,
                                            messages=messages,
                                            max_tokens=1024,
                                            temperature=1.2,
                                            stream=True
                                        )

    for chunk in stream:
        content = chunk.choices[0].delta.content
        if content:
            response_content += chunk. choices[0].delta.content 
        yield response_content

with gr. Blocks(theme=gr.themes.Monochrome(), fill_height=True) as demo:
    gr.ChatInterface( chat_groq,
                        clear_btn=None, 
                        undo_btn=None, 
                        retry_btn=None,
                        )

demo.queue()
demo.launch()