Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -43,7 +43,7 @@ st.sidebar.write("""
|
|
43 |
7. **Performance Note:**
|
44 |
- The model's performance varies due to its size and training data. It performs best on text generation and translation.
|
45 |
- For other tasks, try multiple times if model's output is not optimal (This is due to the generator's sampling parameter settings).
|
46 |
-
- It's best to read/understand/translate the model's output completely first. Model can sometimes fail to stop generation after providing correct answers
|
47 |
8. **Other Tips:**
|
48 |
- Use simple instructions for instruction following.
|
49 |
- For question answering and generation, follow the structure in the corresponding sample text.
|
@@ -53,7 +53,7 @@ st.sidebar.write("""
|
|
53 |
""")
|
54 |
|
55 |
max_length = 100
|
56 |
-
max_new_tokens =
|
57 |
num_beams = 5
|
58 |
temperature = 0.99
|
59 |
top_k = 50
|
@@ -90,7 +90,7 @@ st.title("SabiYarn-125M : Generates text in multiple Nigerian languages.")
|
|
90 |
st.write("**Supported Languages: English, Yoruba, Igbo, Hausa, Pidgin, Efik, Urhobo, Fulfulde, Fulah. \nResults may not be coherent for less represented languages (i.e Efik, \
|
91 |
Urhobo, Fulfulde, Fulah).**")
|
92 |
st.write("**It takes a while (~25s) to return an output on the first 'generate' click. Avg response time: 1-2s on GPU, 40s on CPU**")
|
93 |
-
st.write("**Model outputs
|
94 |
st.write("**For convenience, you can use chatgpt to provide input text and translate/evaluate model output.**")
|
95 |
st.write("-" * 50)
|
96 |
popular_topics = [
|
@@ -266,11 +266,11 @@ if st.button("Generate"):
|
|
266 |
print("Generated text: ", generated_text)
|
267 |
|
268 |
if task == "Sentiment Classification" :
|
269 |
-
if generated_text.
|
270 |
generated_text = "Negative"
|
271 |
-
elif generated_text.
|
272 |
generated_text = "Positive"
|
273 |
-
elif generated_text.
|
274 |
generated_text = "Neutral"
|
275 |
|
276 |
elif task == "Topic Classification":
|
@@ -281,6 +281,7 @@ if st.button("Generate"):
|
|
281 |
|
282 |
elif task == "Translation":
|
283 |
n_sentences = len(re.split(r"\.|\n", user_input))
|
|
|
284 |
generated_text = ".".join(re.split(r"\.|\n", generated_text)[:n_sentences])
|
285 |
|
286 |
full_output = st.empty()
|
|
|
43 |
7. **Performance Note:**
|
44 |
- The model's performance varies due to its size and training data. It performs best on text generation and translation.
|
45 |
- For other tasks, try multiple times if model's output is not optimal (This is due to the generator's sampling parameter settings).
|
46 |
+
- **It's best to read/understand/translate the model's output completely first. Model can sometimes fail to stop generation after providing correct answers.**
|
47 |
8. **Other Tips:**
|
48 |
- Use simple instructions for instruction following.
|
49 |
- For question answering and generation, follow the structure in the corresponding sample text.
|
|
|
53 |
""")
|
54 |
|
55 |
max_length = 100
|
56 |
+
max_new_tokens = 80
|
57 |
num_beams = 5
|
58 |
temperature = 0.99
|
59 |
top_k = 50
|
|
|
90 |
st.write("**Supported Languages: English, Yoruba, Igbo, Hausa, Pidgin, Efik, Urhobo, Fulfulde, Fulah. \nResults may not be coherent for less represented languages (i.e Efik, \
|
91 |
Urhobo, Fulfulde, Fulah).**")
|
92 |
st.write("**It takes a while (~25s) to return an output on the first 'generate' click. Avg response time: 1-2s on GPU, 40s on CPU**")
|
93 |
+
st.write("**Model outputs 80 tokens as default. Adjust in the side bar.**")
|
94 |
st.write("**For convenience, you can use chatgpt to provide input text and translate/evaluate model output.**")
|
95 |
st.write("-" * 50)
|
96 |
popular_topics = [
|
|
|
266 |
print("Generated text: ", generated_text)
|
267 |
|
268 |
if task == "Sentiment Classification" :
|
269 |
+
if "negative" in generated_text.lower():
|
270 |
generated_text = "Negative"
|
271 |
+
elif "positive" in generated_text.lower():
|
272 |
generated_text = "Positive"
|
273 |
+
elif "neutral" in generated_text.lower():
|
274 |
generated_text = "Neutral"
|
275 |
|
276 |
elif task == "Topic Classification":
|
|
|
281 |
|
282 |
elif task == "Translation":
|
283 |
n_sentences = len(re.split(r"\.|\n", user_input))
|
284 |
+
print("split for translation: ",re.split(r"\.|\n", generated_text)[:n_sentences])
|
285 |
generated_text = ".".join(re.split(r"\.|\n", generated_text)[:n_sentences])
|
286 |
|
287 |
full_output = st.empty()
|