BeardedMonster commited on
Commit
89ce0b1
·
verified ·
1 Parent(s): 036ab0d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -35
app.py CHANGED
@@ -24,17 +24,6 @@ tokenizer, model = load_model()
24
 
25
  # Add sidebar with instructions
26
  st.sidebar.title("Instructions: How to use")
27
- # st.sidebar.write("""
28
- # 1. Write something in the text area (a prompt or random text) or use the dropdown menu to select predefined sample text.
29
- # 2. Select a task from the **task dropdown menu** below only if you are providing your own text. **This is very important as it ensures the model responds accordingly.**
30
- # 3. If you are providing your own text, please do not select any predefined sample text from the dropdown menu.
31
- # 3. If a dropdown menu pops up for a nigerian language, **select the nigerian language (it represents a base language for diacritization and text cleaning tasks & target language for translation task).**
32
- # 4. Then, click the Generate button.\n
33
- # 5. For Translation tasks, setting english as the target language yields the best result (english as base language performs the worse).
34
- # **Note: Model's overall performance vary (hallucinates) due to model size and training data distribution. Performance may worsen with other task outside text generation and translation.
35
- # For other tasks, we suggest you try them several times due to the generator's sampling parameter settings.**\n
36
- # 6. Lastly, you can play with some of the generation parameters below to improve performance.
37
- # """)
38
 
39
  st.sidebar.write("""
40
  1. **Write Text or Select Sample:**
@@ -55,14 +44,19 @@ st.sidebar.write("""
55
 
56
  6. **Translation Tips:**
57
  - English as the target language gives the best results.
 
58
 
59
  7. **Performance Note:**
60
  - The model's performance varies due to its size and training data. It performs best on text generation and translation.
61
- - For other tasks, try multiple times to get better results (This is due to the generator's sampling parameter settings).
62
- - It's best to read/translate the model's output completely first. Model can sometimes fail to stop generation after providing correct answers.
63
-
64
- 8. **Adjust Parameters:**
65
- - Experiment with the generation parameters to improve performance. However, default values are sufficient.
 
 
 
 
66
  """)
67
 
68
  max_length = 100
@@ -102,8 +96,9 @@ st.title("SabiYarn-125M : Generates text in multiple Nigerian languages.")
102
 
103
  st.write("**Supported Languages: English, Yoruba, Igbo, Hausa, Pidgin, Efik, Urhobo, Fulfulde, Fulah. \nResults may not be coherent for less represented languages (i.e Efik, \
104
  Urhobo, Fulfulde, Fulah).**")
105
- st.write("**It may take a while (~25s) to return an output on the first 'generate' click.**")
106
- st.write("**For convenience, you can use chatgpt to copy text and translate/evaluate model output.**")
 
107
  st.write("-" * 50)
108
 
109
 
@@ -155,14 +150,21 @@ async def generate_from_api(user_input, generation_config):
155
  # Sample texts
156
  sample_texts = {
157
  "select":"",
 
 
 
 
 
158
  "Hausa: Afirka tana da al'adu...": "Afirka tana da al'adu da harsuna masu yawa. Tana da albarkatu da wuraren yawon shakatawa masu ban mamaki.",
159
  "Yoruba: Ìmọ̀ sáyẹ́nsì àti...": "Ìmọ̀ sáyẹ́nsì àti tẹ̀knọ́lójì ń ṣe émi lóore tó níye lori ní Áfíríkà. Ó ń fún àwọn ènìyàn ní ànfààní láti dá irọyin àti kí wọ́n lè ṣe àwọn nǹkan tuntun.",
160
  "Efik: Oma Ede, Mi ji ogede...": "Oma Ede, Mi ji ogede mi a foroma orhorho edha meji ri eka. ",
161
  "Igbo: N'ala Igbo ...": "N'ala Igbo, ọtụtụ ndị mmadụ kwenyere na e nwere mmiri ara na elu-ilu",
162
  "urhobo: Eshare nana ri...":"Eshare nana ri vwo ẹguọnọ rẹ iyono rẹ Aristotle vẹ Plato na",
163
  "Efik: Ke eyo ...":"Ke eyo Jesus ye mme mbet esie, etop emi ama ada ifụre ọsọk mme Jew oro esịt okobụn̄ọde ke ntak idiọkido ke Israel, oro ẹkenyụn̄ ẹdude ke mfụhọ ke itie-ufụn mme nsunsu ido edinam Ido Ukpono Mme Jew eke akpa isua ikie.",
164
- "who are you?": "who are you?",
165
- "Speak Yoruba": "Speak Yoruba",
 
 
166
  "Translate 'how are you?' to Yoruba": "how are you?",
167
  "Translate to pidgin": "Spain won the 2024 europa football cup. it was a tough one because they had to play very strong opponents in the quarter-finals, semi-finals and finals.",
168
  "Translate 'Often, all Yoruba children...' to Yoruba": "Often, all Yoruba children take pride in speaking the Yoruba language.",
@@ -175,12 +177,20 @@ sample_texts = {
175
 
176
  instruction_wrap = {
177
  # "Translate 'Often, all Yoruba children...' to Yoruba":"<translate> Often, all Yoruba children take pride in speaking the Yoruba language. <yor>",
 
 
 
 
 
178
  "Tell me a story in pidgin": "<prompt> Tell me a story in pidgin <response>:",
179
  "Spain won the 2024 europa football cup. it was a tough one because they had to play very strong opponents in the quarter-finals, semi-finals and finals.": "<translate> Spain won the 2024 europa football cup. it was a tough one because they had to play very strong opponents in the quarter-finals, semi-finals and finals. <pcm>",
180
  "how are you?": "<translate> how are you? <yor>:",
181
  "Often, all Yoruba children take pride in speaking the Yoruba language.": "<translate> Often, all Yoruba children take pride in speaking the Yoruba language. <yor>",
182
  "who are you?": "<prompt> who are you? <response>:",
 
183
  "Speak Yoruba": "<prompt> Speak Yoruba <response>:",
 
 
184
  "Anyi na-echefu oke ike." : "<classify> Anyi na-echefu oke ike. <sentiment>",
185
  "Abin mamaki ne aikin da shugabaZn HNajeriya ybake yi. kCiF 39gaba Tda haRkGa sir!": "<clean> Abin mamaki ne aikin da shugabaZn HNajeriya ybake yi. kCiF 39gaba Tda haRkGa sir! <pcm>",
186
  "E sun, Alaga, fun ise amalayi ti e n se ni Naijiria. E maa ba a lo, egbon!": "<diacritize> E sun, Alaga, fun ise amalayi ti e n se ni Naijiria. E maa ba a lo, egbon! <yor>",
@@ -209,9 +219,11 @@ task_options = {
209
  "Translation": "<translate> {} ",
210
  "Sentiment Classification": "<classify> {} <sentiment>:",
211
  "Topic Classification": "<classify> {} <topic>",
212
- "Instruction Following" : "<prompt> {} <response>:",
213
  "Headline Generation": "<title> {} <headline>",
214
  "Text Diacritization": "<diacritize> {} ",
 
 
215
  "Text Cleaning": "<clean> {} "
216
  }
217
 
@@ -223,9 +235,9 @@ language_options = {
223
  "Ibo": "<ibo>",
224
  "Pidgin": "<pcm>",
225
  "English": "<eng>",
226
- # "Efik": "<efi>",
227
- # "Urhobo": "<urh>",
228
- # "Fulah": "<ful>"
229
  }
230
 
231
 
@@ -250,17 +262,15 @@ def wrap_text(text, task_value):
250
 
251
  # Text input
252
  user_input = st.text_area("Enter text below **(PLEASE, FIRST READ ALL INSTRUCTIONS IN THE SIDEBAR CAREFULLY FOR THE BEST EXPERIENCE)**: ", sample_texts.get(sample_text, sample_text))
253
- if task != "select":
254
- user_input = user_input + " "
255
 
256
- user_input = instruction_wrap.get(user_input, user_input)
 
 
257
  print("Final user input: ", user_input)
258
 
259
  if st.button("Generate"):
260
  if user_input:
261
- with st.spinner("Please wait..."):
262
- # try:
263
- # st.write("**Generated Text Below:**")
264
  wrapped_input = wrap_text(user_input, task_value)
265
  print("wrapped_input: ", wrapped_input)
266
  generation_config["max_new_tokens"]= min(max_new_tokens, 1024 - len(tokenizer.tokenize(wrapped_input)))
@@ -281,7 +291,7 @@ if st.button("Generate"):
281
  generated_text = generated_text.strip("\n")
282
  print("Generated text: ", generated_text)
283
 
284
- if task == "Sentiment Classification" or ("Anyi na-echefu oke ike." in user_input and "Anyi na-echefu oke ike." in sample_texts.values()):
285
  if generated_text.strip().lower().startswith("negative"):
286
  generated_text = "Negative"
287
  elif generated_text.strip().lower().startswith("positive"):
@@ -289,7 +299,7 @@ if st.button("Generate"):
289
  elif generated_text.strip().lower().startswith("neutral"):
290
  generated_text = "Neutral"
291
 
292
- elif task == "Topic Classification" or ("Africa Free Trade Zone: Kò sí ìdènà láti kó ọjà láti orílẹ̀èdè kan sí òmíràn" in user_input and "Africa Free Trade Zone: Kò sí ìdènà láti kó ọjà láti orílẹ̀èdè kan sí òmíràn" in sample_texts.values()) :
293
  generated_text = generated_text[:15]
294
  print("split", generated_text.split(" ")[0], re.split(r"\.|\n|\*\*|\*", generated_text)[0], generated_text.split(" "))
295
  generated_text = re.split(r"\.|\n|\*\*|\*", generated_text)[0]
@@ -297,7 +307,7 @@ if st.button("Generate"):
297
  generated_text = asyncio.run(assign_topic(generated_text))
298
 
299
  elif task == "Translation":
300
- n_sentences = len(user_input.split("."))
301
  generated_text = ".".join(re.split(r"\.|\n", generated_text)[:n_sentences])
302
 
303
  full_output = st.empty()
@@ -311,7 +321,6 @@ if st.button("Generate"):
311
  end_time = time.time()
312
  time_diff = end_time - start_time
313
  st.write("Time taken: ", time_diff , "seconds.")
314
- # except Exception as e:
315
- # st.error(f"Error during text generation: {e}")
316
  else:
317
  st.write("Please enter some text to generate.")
 
24
 
25
  # Add sidebar with instructions
26
  st.sidebar.title("Instructions: How to use")
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  st.sidebar.write("""
29
  1. **Write Text or Select Sample:**
 
44
 
45
  6. **Translation Tips:**
46
  - English as the target language gives the best results.
47
+ - You can also test inter-language translation i.e yoruba to igbo
48
 
49
  7. **Performance Note:**
50
  - The model's performance varies due to its size and training data. It performs best on text generation and translation.
51
+ - For other tasks, try multiple times if model's output is not optimal (This is due to the generator's sampling parameter settings).
52
+ - It's best to read/understand/translate the model's output completely first. Model can sometimes fail to stop generation after providing correct answers.
53
+
54
+ 8. **Other Tips:**
55
+ - Use simple instructions for instruction following.
56
+ - For question answering and generation, follow the structure in the corresponding sample text.
57
+
58
+ 9. **Adjust Parameters:**
59
+ - Experiment with the generation parameters below to improve performance. However, default values are sufficient.
60
  """)
61
 
62
  max_length = 100
 
96
 
97
  st.write("**Supported Languages: English, Yoruba, Igbo, Hausa, Pidgin, Efik, Urhobo, Fulfulde, Fulah. \nResults may not be coherent for less represented languages (i.e Efik, \
98
  Urhobo, Fulfulde, Fulah).**")
99
+ st.write("**It takes a while (~25s) to return an output on the first 'generate' click. Avg response time: 1-2s
100
+ st.write("**Model outputs 50 tokens as default. Adjust in the side bar.**")
101
+ st.write("**For convenience, you can use chatgpt to provide input text and translate/evaluate model output.**")
102
  st.write("-" * 50)
103
 
104
 
 
150
  # Sample texts
151
  sample_texts = {
152
  "select":"",
153
+ "Me ya nuna?": "Me ya nuna?",
154
+ "Wetin dem dey call you?": "Wetin dem dey call you?",
155
+ "M nwere ike ịma onye ị bụ? Gịnị bụ njirimara gị?": "M nwere ike ịma onye ị bụ? Gịnị bụ njirimara gị?",
156
+ "Bawo ni, kini...": "Bawo ni, kini nkan ti o nilo lati maa mo bayi?",
157
+ "What are you called?": "What are you called?",
158
  "Hausa: Afirka tana da al'adu...": "Afirka tana da al'adu da harsuna masu yawa. Tana da albarkatu da wuraren yawon shakatawa masu ban mamaki.",
159
  "Yoruba: Ìmọ̀ sáyẹ́nsì àti...": "Ìmọ̀ sáyẹ́nsì àti tẹ̀knọ́lójì ń ṣe émi lóore tó níye lori ní Áfíríkà. Ó ń fún àwọn ènìyàn ní ànfààní láti dá irọyin àti kí wọ́n lè ṣe àwọn nǹkan tuntun.",
160
  "Efik: Oma Ede, Mi ji ogede...": "Oma Ede, Mi ji ogede mi a foroma orhorho edha meji ri eka. ",
161
  "Igbo: N'ala Igbo ...": "N'ala Igbo, ọtụtụ ndị mmadụ kwenyere na e nwere mmiri ara na elu-ilu",
162
  "urhobo: Eshare nana ri...":"Eshare nana ri vwo ẹguọnọ rẹ iyono rẹ Aristotle vẹ Plato na",
163
  "Efik: Ke eyo ...":"Ke eyo Jesus ye mme mbet esie, etop emi ama ada ifụre ọsọk mme Jew oro esịt okobụn̄ọde ke ntak idiọkido ke Israel, oro ẹkenyụn̄ ẹdude ke mfụhọ ke itie-ufụn mme nsunsu ido edinam Ido Ukpono Mme Jew eke akpa isua ikie.",
164
+ "Question Generation: Afghanistan ...": "Afghanistan has around 150 radio stations and over 50 television stations, which includes the state-owned RTA TV and various private channels such as TOLO and Shamshad TV. The first Afghan newspaper was published in 1906 and there are hundreds of print outlets today. By the 1920s, Radio Kabul was broadcasting local radio services. Television programs began airing in the early 1970s. Voice of America, BBC, and Radio Free Europe/Radio Liberty (RFE/RL) broadcast in both of Afghanistan's official languages.\n Considering this context, what question would you ask?",
165
+ "Instruct: Please narrate a story..": "Please narrate a short story in yoruba",
166
+ "Question-Answering: Kai found one ...": "Kai found one for sale online but it was too much money for her. Keeping the provided context in mind, please answer the subsequent question: What does Kai need to do before this? A. cheaper B. Open up her laptop C. save money",
167
+
168
  "Translate 'how are you?' to Yoruba": "how are you?",
169
  "Translate to pidgin": "Spain won the 2024 europa football cup. it was a tough one because they had to play very strong opponents in the quarter-finals, semi-finals and finals.",
170
  "Translate 'Often, all Yoruba children...' to Yoruba": "Often, all Yoruba children take pride in speaking the Yoruba language.",
 
177
 
178
  instruction_wrap = {
179
  # "Translate 'Often, all Yoruba children...' to Yoruba":"<translate> Often, all Yoruba children take pride in speaking the Yoruba language. <yor>",
180
+ "Me ya nuna?":"<prompt> Me ya nuna? <response>:",
181
+ "Wetin dem dey call you?":"<prompt> Wetin dem dey call you? <response>:",
182
+ "M nwere ike ịma onye ị bụ? Gịnị bụ njirimara gị?":"<prompt> M nwere ike ịma onye ị bụ? Gịnị bụ njirimara gị? <response>:",
183
+ "What are you called?":"<prompt> What are you called? <response>:",
184
+ "Bawo ni, kini nkan ti o nilo lati maa mo bayi?":"<prompt> Bawo ni, kini nkan ti o nilo lati maa mo bayi? <response>:",
185
  "Tell me a story in pidgin": "<prompt> Tell me a story in pidgin <response>:",
186
  "Spain won the 2024 europa football cup. it was a tough one because they had to play very strong opponents in the quarter-finals, semi-finals and finals.": "<translate> Spain won the 2024 europa football cup. it was a tough one because they had to play very strong opponents in the quarter-finals, semi-finals and finals. <pcm>",
187
  "how are you?": "<translate> how are you? <yor>:",
188
  "Often, all Yoruba children take pride in speaking the Yoruba language.": "<translate> Often, all Yoruba children take pride in speaking the Yoruba language. <yor>",
189
  "who are you?": "<prompt> who are you? <response>:",
190
+ "Kai found one for sale online but it was too much money for her. Keeping the provided context in mind, please answer the subsequent question: What does Kai need to do before this? A. cheaper B. Open up her laptop C. save money":"<prompt> Kai found one for sale online but it was too much money for her. Keeping the provided context in mind, please answer the subsequent question: What does Kai need to do before this? A. cheaper B. Open up her laptop C. save money <response>:",
191
  "Speak Yoruba": "<prompt> Speak Yoruba <response>:",
192
+ "Please narrate a short story in yoruba":"<prompt> Please narrate a short story in yoruba <response>:",
193
+ "Afghanistan has around 150 radio stations and over 50 television stations, which includes the state-owned RTA TV and various private channels such as TOLO and Shamshad TV. The first Afghan newspaper was published in 1906 and there are hundreds of print outlets today. By the 1920s, Radio Kabul was broadcasting local radio services. Television programs began airing in the early 1970s. Voice of America, BBC, and Radio Free Europe/Radio Liberty (RFE/RL) broadcast in both of Afghanistan's official languages.\n Considering this context, what question would you ask?":"<prompt> Afghanistan has around 150 radio stations and over 50 television stations, which includes the state-owned RTA TV and various private channels such as TOLO and Shamshad TV. The first Afghan newspaper was published in 1906 and there are hundreds of print outlets today. By the 1920s, Radio Kabul was broadcasting local radio services. Television programs began airing in the early 1970s. Voice of America, BBC, and Radio Free Europe/Radio Liberty (RFE/RL) broadcast in both of Afghanistan's official languages.\n Considering this context, what question would you ask? <response>:"
194
  "Anyi na-echefu oke ike." : "<classify> Anyi na-echefu oke ike. <sentiment>",
195
  "Abin mamaki ne aikin da shugabaZn HNajeriya ybake yi. kCiF 39gaba Tda haRkGa sir!": "<clean> Abin mamaki ne aikin da shugabaZn HNajeriya ybake yi. kCiF 39gaba Tda haRkGa sir! <pcm>",
196
  "E sun, Alaga, fun ise amalayi ti e n se ni Naijiria. E maa ba a lo, egbon!": "<diacritize> E sun, Alaga, fun ise amalayi ti e n se ni Naijiria. E maa ba a lo, egbon! <yor>",
 
219
  "Translation": "<translate> {} ",
220
  "Sentiment Classification": "<classify> {} <sentiment>:",
221
  "Topic Classification": "<classify> {} <topic>",
222
+ "Simple Instruction Following" : "<prompt> {} <response>:",
223
  "Headline Generation": "<title> {} <headline>",
224
  "Text Diacritization": "<diacritize> {} ",
225
+ "Question Generation": "<prompt> {} <response>:",
226
+ "Question-Answering" : "<prompt> {} <response>:",
227
  "Text Cleaning": "<clean> {} "
228
  }
229
 
 
235
  "Ibo": "<ibo>",
236
  "Pidgin": "<pcm>",
237
  "English": "<eng>",
238
+ "Efik": "<efi>",
239
+ "Urhobo": "<urh>",
240
+ "Fulah": "<ful>"
241
  }
242
 
243
 
 
262
 
263
  # Text input
264
  user_input = st.text_area("Enter text below **(PLEASE, FIRST READ ALL INSTRUCTIONS IN THE SIDEBAR CAREFULLY FOR THE BEST EXPERIENCE)**: ", sample_texts.get(sample_text, sample_text))
 
 
265
 
266
+ if task == "select":
267
+ user_input = instruction_wrap.get(user_input, user_input)
268
+
269
  print("Final user input: ", user_input)
270
 
271
  if st.button("Generate"):
272
  if user_input:
273
+ with st.spinner("Please wait..."):")
 
 
274
  wrapped_input = wrap_text(user_input, task_value)
275
  print("wrapped_input: ", wrapped_input)
276
  generation_config["max_new_tokens"]= min(max_new_tokens, 1024 - len(tokenizer.tokenize(wrapped_input)))
 
291
  generated_text = generated_text.strip("\n")
292
  print("Generated text: ", generated_text)
293
 
294
+ if task == "Sentiment Classification" :
295
  if generated_text.strip().lower().startswith("negative"):
296
  generated_text = "Negative"
297
  elif generated_text.strip().lower().startswith("positive"):
 
299
  elif generated_text.strip().lower().startswith("neutral"):
300
  generated_text = "Neutral"
301
 
302
+ elif task == "Topic Classification":
303
  generated_text = generated_text[:15]
304
  print("split", generated_text.split(" ")[0], re.split(r"\.|\n|\*\*|\*", generated_text)[0], generated_text.split(" "))
305
  generated_text = re.split(r"\.|\n|\*\*|\*", generated_text)[0]
 
307
  generated_text = asyncio.run(assign_topic(generated_text))
308
 
309
  elif task == "Translation":
310
+ n_sentences = len(re.split(r"\.|\n", user_input))
311
  generated_text = ".".join(re.split(r"\.|\n", generated_text)[:n_sentences])
312
 
313
  full_output = st.empty()
 
321
  end_time = time.time()
322
  time_diff = end_time - start_time
323
  st.write("Time taken: ", time_diff , "seconds.")
324
+
 
325
  else:
326
  st.write("Please enter some text to generate.")