File size: 15,991 Bytes
58dedb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6755d15
 
 
 
58dedb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6755d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

import math
import torch
import numpy as np
import pandas as pd
import time
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from copy import deepcopy, copy
from pprint import pprint
import shutil
import datetime
import re
import json
from pathlib import Path


from itertools import chain
import numpy as np
import pandas as pd



import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# Fetching pre-trained model and tokenizer
class initializer:
  def __init__(self, MODEL_NAME, **config):    
    self.MODEL_NAME = MODEL_NAME

    model = config.get("model")
    tokenizer = config.get("tokenizer")

    # Model
    self.model = model.from_pretrained(MODEL_NAME, 
                                       return_dict=True,
                                       output_attentions = False)
    # Tokenizer
    self.tokenizer = tokenizer.from_pretrained(MODEL_NAME,
                                               do_lower_case = True)

config = {
    "model": AutoModelForSequenceClassification,
    "tokenizer": AutoTokenizer
     }

# Pre-trained model initializer (uncased sciBERT)
initializer_model_scibert = initializer('allenai/scibert_scivocab_uncased', **config)
# initializer_model = initializer('bert-base-uncased', **config)

LABEL_MAP = {'negative': 0,
             'not included':0,
             '0':0,
             0:0,
             'excluded':0,
             'positive': 1,
             'included':1,
             '1':1,
             1:1,
             }

class SLR_DataSet(Dataset):
  def __init__(self,
               treat_text =None,
               etailment_txt =None,
               LABEL_MAP= None,
               NA = None,
               **args):
    self.tokenizer = args.get('tokenizer')
    self.data = args.get('data').reset_index()
    self.max_seq_length = args.get("max_seq_length", 512)
    self.INPUT_NAME = args.get("input", 'x')
    self.LABEL_NAME = args.get("output", None)
    self.treat_text = treat_text
    self.etailment_txt = etailment_txt
    self.LABEL_MAP=LABEL_MAP 
    self.NA=NA 

    if not self.INPUT_NAME in self.data.columns:
      self.data[self.INPUT_NAME] = np.nan
  

  # Tokenizing and processing text
  def encode_text(self, example):
    comment_text = example[self.INPUT_NAME]
    if not isinstance(self.treat_text,type(None)):
      comment_text = self.treat_text(comment_text)
    
    if example[self.LABEL_NAME] is np.NaN and self.NA != None:
      labels = self.NA
      
    elif self.LABEL_NAME != None:
      try:
        labels = self.LABEL_MAP[example[self.LABEL_NAME]]
      except:
        labels = -1
        # raise TypeError(f"Label passed {example[self.LABEL_NAME]}, is not be in LABEL_MAP")
        # print('Not handle LABEL_MAP')
    else:
      labels = None

    if self.etailment_txt:
      tensor_data = self.tokenize((comment_text, self.etailment_txt), labels )
    else:
      tensor_data = self.tokenize((comment_text), labels)

    return tensor_data

  def tokenize(self, comment_text, labels):
    encoding = self.tokenizer.encode_plus(
      (comment_text),
      add_special_tokens=True,
      max_length=self.max_seq_length,
      return_token_type_ids=True,
      padding="max_length",
      truncation=True,
      return_attention_mask=True,
      return_tensors='pt',
    )


    
    if labels != None:
      return tuple(((
        encoding["input_ids"].flatten(),
        encoding["attention_mask"].flatten(),
        encoding["token_type_ids"].flatten()
      ),
        torch.tensor([torch.tensor(labels).to(int)])
      ))
    else:
      return tuple(((
        encoding["input_ids"].flatten(),
        encoding["attention_mask"].flatten(),
        encoding["token_type_ids"].flatten()
        ),
        torch.empty(0)
      ))


  def __len__(self):
    return len(self.data)

  # Returning data
  def __getitem__(self, index: int):
    # print(index)
    data_row = self.data.iloc[index]
    tensor_data =  self.encode_text(data_row)
    return tensor_data


from tqdm import tqdm
import gc
from IPython.display import clear_output
from collections import namedtuple

features = namedtuple('features', ['bert', 'feature_map'])
Output = namedtuple('Output', ['loss', 'features', 'logit'])

bert_tuple = namedtuple('bert',['hidden_states', 'attentions'])



class loop():
  
  @classmethod
  def train_loop(self, model,device, optimizer, data_train_loader, scheduler = None, data_valid_loader =  None,
                epochs = 4, print_info = 1000000000, metrics = True, log = None, metrics_print = True):
    # Start the model's parameters

    table.reset()
    model.to(device)
    model.train()

    # Task epochs (Inner epochs)
    for epoch in range(0, epochs):
      train_loss, _, out = self.batch_loop(data_train_loader, model, optimizer, device)
      
      if scheduler is not None:
          for sched in scheduler:
            sched.step()

      if (epoch % print_info == 0):
        if metrics:
          labels = self.map_batch(out[1]).to(int).squeeze()
          logits = self.map_batch(out[0]).squeeze()

          train_metrics, _ = plot(logits, labels, 0.9)

          del labels, logits

          train_metrics['Loss'] =  torch.Tensor(train_loss).mean().item() 
          
          if not isinstance(log,type(None)):
            log({"train_"+ x :y for x,y in train_metrics.items()})

          table(train_metrics, epoch, "Train")

        else:
          print("Loss: ", torch.Tensor(train_loss).mean().item())
  
        if  data_valid_loader:
          valid_loss, _, out = self.eval_loop(data_valid_loader, model, device=device)          
          if metrics:
            global out2
            out2 = out
            labels = self.map_batch(out[1]).to(int).squeeze()
            logits = self.map_batch(out[0]).squeeze()

            valid_metrics, _ = plot(logits, labels, 0.9)
            valid_metrics['Loss'] =  torch.Tensor(valid_loss).mean().item()
            
            del labels, logits 
    
            if not isinstance(log,type(None)):
              log({"valid_"+ x :y for x,y in train_metrics.items()})
            
            table(valid_metrics, epoch, "Valid")

            if metrics_print:
              print(table.data_frame().round(4))

          else:
            print("Valid Loss: ", torch.Tensor(valid_loss).mean().item())

    return table.data_frame()

  @classmethod
  def batch_loop(self, loader, model, optimizer, device):
    all_loss = []
    features_lst = []
    attention_lst = []
    logits = []
    outputs = []

    # Test's Batch loop
    for inner_step, batch in enumerate(tqdm(loader,
                                            desc="Train validation | ",
                                            ncols=80)) :
      input, output =batch
      input = tuple(t.to(device) for t in input)
      
      if isinstance(output, torch.Tensor):
        output = output.to(device)

      
      optimizer.zero_grad()
      
      # Predictions
      loss, feature, logit = model(input, output)

      # compute grads
      loss.backward()

      # update parameters
      optimizer.step()


      input = tuple(t.to("cpu") for t in input)
      
      if isinstance(output, torch.Tensor):
        output = output.to("cpu")

      if isinstance(loss, torch.Tensor):
        all_loss.append(loss.to('cpu').detach().clone())

      if isinstance(logit, torch.Tensor):
        logits.append(logit.to('cpu').detach().clone())

      
      if isinstance(output, torch.Tensor):
        outputs.append(output.to('cpu').detach().clone())        
      
      if len(feature.feature_map)!=0:
        features_lst.append([x.to('cpu').detach().clone() for x in feature.feature_map])


      del batch, input, output, loss, feature, logit

    # model.to('cpu')
    gc.collect()
    torch.cuda.empty_cache()

    # del model, optimizer

    return Output(all_loss, features(None,features_lst), (logits, outputs))

  @classmethod
  def eval_loop(self, loader, model, device, attention= False, hidden_states=False):
    all_loss = []
    features_lst = []
    attention_lst = []
    hidden_states_lst = []
    logits = []
    outputs = []
    model.eval()

    with torch.no_grad():
      # Test's Batch loop
      for inner_step, batch in enumerate(tqdm(loader,
                                              desc="Test validation | ",
                                              ncols=80)) :
        input, output =batch
        input = tuple(t.to(device) for t in input)

        
        if output.numel()!=0:          
          # Predictions
          loss, feature, logit = model(input, output.to(device),
                                            attention= attention, hidden_states=hidden_states)
        else:
          # Predictions
          loss, feature, logit = model(input,
                                            attention= attention, hidden_states=hidden_states)


        input = tuple(t.to("cpu") for t in input)
        
        if isinstance(output, torch.Tensor):
          output = output.to("cpu")

        if isinstance(loss, torch.Tensor):
          all_loss.append(loss.to('cpu').detach().clone())

        if isinstance(logit, torch.Tensor):
          logits.append(logit.to('cpu').detach().clone())

        try:
          if not isinstance(feature.bert.attentions, type(None)):
            attention_lst.append([x.to('cpu').detach().clone() for x in feature.bert.attentions])
        except:
          attention_lst = None

        try:
          if not isinstance(feature.bert.hidden_states, type(None)):
            hidden_states_lst.append([x.to('cpu').detach().clone() for x in feature.bert.hidden_states])
        except:
          hidden_states_lst = None
        
        if isinstance(output, torch.Tensor):
          outputs.append(output.to('cpu').detach().clone())        
        
        if len(feature.feature_map)!=0:
          features_lst.append([x.to('cpu').detach().clone() for x in feature.feature_map])


        del batch, input, output, loss, feature, logit

      # model.to('cpu')
      gc.collect()
      torch.cuda.empty_cache()

      # del model, optimizer

      return Output(all_loss, features(bert_tuple(hidden_states_lst,attention_lst),features_lst), (logits, outputs))

  # Process predictions and map the feature_map in tsne
  @staticmethod
  def map_batch(features):
    features = torch.cat(features, dim =0)
    # features = np.concatenate(np.array(features,dtype=object)).astype(np.float32)
    # features = torch.tensor(features)
    return features.detach().clone()


class table:
  data = []
  index = []

  @torch.no_grad()
  def __init__(self, data, epochs, name):
    self.index.append((epochs, name))
    self.data.append(data)


  @classmethod
  @torch.no_grad()
  def data_frame(cls):
    clear_output()
    index = pd.MultiIndex.from_tuples(cls.index, names=["Epochs", "Data"])
    data = pd.DataFrame(cls.data,  index=index)
    return data

  @classmethod
  @torch.no_grad()
  def reset(cls):
    cls.data = []
    cls.index = []

from collections import namedtuple
  
# Declaring namedtuple()


# Pre-trained model
class Encoder(nn.Module):
  def __init__(self, layers, freeze_bert, model):
    super(Encoder, self).__init__()

    # Dummy Parameter
    self.dummy_param = nn.Parameter(torch.empty(0))
    
    # Pre-trained model
    self.model = deepcopy(model)

    # Freezing bert parameters
    if freeze_bert:
      for param in self.model.parameters():
        param.requires_grad = freeze_bert

    # Selecting hidden layers of the pre-trained model
    old_model_encoder = self.model.encoder.layer
    new_model_encoder = nn.ModuleList()
    
    for i in layers:
      new_model_encoder.append(old_model_encoder[i])

    self.model.encoder.layer = new_model_encoder
  
  # Feed forward
  def forward(self, output_attentions=False,output_hidden_states=False, **x):
    
    return self.model(output_attentions=output_attentions,
                      output_hidden_states=output_hidden_states,
                      return_dict=True,
                      **x)

# Complete model
class SLR_Classifier(nn.Module):
  def __init__(self, **data):
    super(SLR_Classifier, self).__init__()

    # Dummy Parameter
    self.dummy_param = nn.Parameter(torch.empty(0))

    # Loss function
    # Binary Cross Entropy with logits reduced to mean
    self.loss_fn = nn.BCEWithLogitsLoss(reduction = 'mean',
                                        pos_weight=torch.FloatTensor([data.get("pos_weight",  2.5)]))

    # Pre-trained model
    self.Encoder = Encoder(layers = data.get("bert_layers",  range(12)),
                           freeze_bert = data.get("freeze_bert",  False),
                           model = data.get("model"),
                           )

    # Feature Map Layer
    self.feature_map = nn.Sequential(
            # nn.LayerNorm(self.Encoder.model.config.hidden_size),
            nn.BatchNorm1d(self.Encoder.model.config.hidden_size),
            # nn.Dropout(data.get("drop", 0.5)),
            nn.Linear(self.Encoder.model.config.hidden_size, 200),
            nn.Dropout(data.get("drop", 0.5)),
        )

    # Classifier Layer
    self.classifier = nn.Sequential(
            # nn.LayerNorm(self.Encoder.model.config.hidden_size),
            # nn.Dropout(data.get("drop", 0.5)),
            # nn.BatchNorm1d(self.Encoder.model.config.hidden_size),
            # nn.Dropout(data.get("drop", 0.5)),
            nn.Tanh(),
            nn.Linear(200, 1)
        )

    # Initializing layer parameters
    nn.init.normal_(self.feature_map[1].weight, mean=0, std=0.00001)
    nn.init.zeros_(self.feature_map[1].bias)

  # Feed forward
  def forward(self, input, output=None, attention= False, hidden_states=False):
    # input, output = batch
    input_ids, attention_mask, token_type_ids = input
    
    predict = self.Encoder(output_attentions=attention,
                           output_hidden_states=hidden_states,
                           **{"input_ids":input_ids,
                              "attention_mask":attention_mask,
                              "token_type_ids":token_type_ids
                              })
    
    feature_maped = self.feature_map(predict['pooler_output'])
    # print(feature_maped)
    logit = self.classifier(feature_maped)

    # predict = torch.sigmoid(logit)

    if not isinstance(output, type(None)):
      # Loss function 
      loss = self.loss_fn(logit.to(torch.float), output.to(torch.float)) 
      
      return Output(loss, features(predict, feature_maped), logit)
    else:
      return Output(None, features(predict, feature_maped), logit)



  def fit(self, optimizer, data_train_loader, scheduler = None, data_valid_loader =  None,
                epochs = 4, print_info = 1000000000, metrics = True, log = None, metrics_print = True):

    
    return loop.train_loop(self,
                           device = self.dummy_param.device,
                           optimizer=optimizer,
                           scheduler= scheduler,
                           data_train_loader=data_train_loader,
                           data_valid_loader= data_valid_loader,
                           epochs = epochs,
                           print_info = print_info,
                           metrics = metrics,
                           log= log,
                           metrics_print=metrics_print)

  def evaluate(self, loader, attention= False, hidden_states=False):
    # global feature
    all_loss, feature, (logits, outputs) = loop.eval_loop(loader, self, self.dummy_param.device,
                                                          attention= attention, hidden_states=hidden_states)
    

    logits = loop.map_batch(logits)

    if  len(outputs) != 0:
      outputs = loop.map_batch(outputs)
    
    return Output(np.mean(all_loss), feature, (logits, outputs))