Spaces:
Build error
Build error
File size: 19,176 Bytes
6b71499 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
from torch import nn
import torch
import numpy as np
from copy import deepcopy
import re
import unicodedata
from torch.utils.data import Dataset, DataLoader,TensorDataset, RandomSampler
from sklearn.model_selection import train_test_split
from torch.optim import Adam
from copy import deepcopy
import gc
import torch
import numpy as np
from torchmetrics import functional as fn
import random
# Pre-trained model
class Encoder(nn.Module):
def __init__(self, layers, freeze_bert, model):
super(Encoder, self).__init__()
# Dummy Parameter
self.dummy_param = nn.Parameter(torch.empty(0))
# Pre-trained model
self.model = deepcopy(model)
# Freezing bert parameters
if freeze_bert:
for param in self.model.parameters():
param.requires_grad = freeze_bert
# Selecting hidden layers of the pre-trained model
old_model_encoder = self.model.encoder.layer
new_model_encoder = nn.ModuleList()
for i in layers:
new_model_encoder.append(old_model_encoder[i])
self.model.encoder.layer = new_model_encoder
# Feed forward
def forward(self, **x):
return self.model(**x)['pooler_output']
# Complete model
class SLR_Classifier(nn.Module):
def __init__(self, **data):
super(SLR_Classifier, self).__init__()
# Dummy Parameter
self.dummy_param = nn.Parameter(torch.empty(0))
# Loss function
# Binary Cross Entropy with logits reduced to mean
self.loss_fn = nn.BCEWithLogitsLoss(reduction = 'mean',
pos_weight=torch.FloatTensor([data.get("pos_weight", 2.5)]))
# Pre-trained model
self.Encoder = Encoder(layers = data.get("bert_layers", range(12)),
freeze_bert = data.get("freeze_bert", False),
model = data.get("model"),
)
# Feature Map Layer
self.feature_map = nn.Sequential(
# nn.LayerNorm(self.Encoder.model.config.hidden_size),
nn.BatchNorm1d(self.Encoder.model.config.hidden_size),
# nn.Dropout(data.get("drop", 0.5)),
nn.Linear(self.Encoder.model.config.hidden_size, 200),
nn.Dropout(data.get("drop", 0.5)),
)
# Classifier Layer
self.classifier = nn.Sequential(
# nn.LayerNorm(self.Encoder.model.config.hidden_size),
# nn.Dropout(data.get("drop", 0.5)),
# nn.BatchNorm1d(self.Encoder.model.config.hidden_size),
# nn.Dropout(data.get("drop", 0.5)),
nn.Tanh(),
nn.Linear(200, 1)
)
# Initializing layer parameters
nn.init.normal_(self.feature_map[1].weight, mean=0, std=0.00001)
nn.init.zeros_(self.feature_map[1].bias)
# Feed forward
def forward(self, input_ids, attention_mask, token_type_ids, labels):
predict = self.Encoder(**{"input_ids":input_ids,
"attention_mask":attention_mask,
"token_type_ids":token_type_ids})
feature = self.feature_map(predict)
logit = self.classifier(feature)
predict = torch.sigmoid(logit)
# Loss function
loss = self.loss_fn(logit.to(torch.float), labels.to(torch.float).unsqueeze(1))
return [loss, [feature, logit], predict]
# Undesirable patterns within texts
patterns = {
'CONCLUSIONS AND IMPLICATIONS':'',
'BACKGROUND AND PURPOSE':'',
'EXPERIMENTAL APPROACH':'',
'KEY RESULTS AEA':'',
'©':'',
'®':'',
'μ':'',
'(C)':'',
'OBJECTIVE:':'',
'MATERIALS AND METHODS:':'',
'SIGNIFICANCE:':'',
'BACKGROUND:':'',
'RESULTS:':'',
'METHODS:':'',
'CONCLUSIONS:':'',
'AIM:':'',
'STUDY DESIGN:':'',
'CLINICAL RELEVANCE:':'',
'CONCLUSION:':'',
'HYPOTHESIS:':'',
'CLINICAL RELEVANCE:':'',
'Questions/Purposes:':'',
'Introduction:':'',
'PURPOSE:':'',
'PATIENTS AND METHODS:':'',
'FINDINGS:':'',
'INTERPRETATIONS:':'',
'FUNDING:':'',
'PROGRESS:':'',
'CONTEXT:':'',
'MEASURES:':'',
'DESIGN:':'',
'BACKGROUND AND OBJECTIVES:':'',
'<p>':'',
'</p>':'',
'<<ETX>>':'',
'+/-':'',
'\(.+\)':'',
'\[.+\]':'',
' \d ':'',
'<':'',
'>':'',
'- ':'',
' +':' ',
', ,':',',
',,':',',
'%':' percent',
'per cent':' percent'
}
patterns = {x.lower():y for x,y in patterns.items()}
LABEL_MAP = {'negative': 0,
'not included':0,
'0':0,
0:0,
'excluded':0,
'positive': 1,
'included':1,
'1':1,
1:1,
}
class SLR_DataSet(Dataset):
def __init__(self,treat_text =None, **args):
self.tokenizer = args.get('tokenizer')
self.data = args.get('data')
self.max_seq_length = args.get("max_seq_length", 512)
self.INPUT_NAME = args.get("input", 'x')
self.LABEL_NAME = args.get("output", 'y')
self.treat_text = treat_text
# Tokenizing and processing text
def encode_text(self, example):
comment_text = example[self.INPUT_NAME]
if self.treat_text:
comment_text = self.treat_text(comment_text)
try:
labels = LABEL_MAP[example[self.LABEL_NAME].lower()]
except:
labels = -1
encoding = self.tokenizer.encode_plus(
(comment_text, "It is great text"),
add_special_tokens=True,
max_length=self.max_seq_length,
return_token_type_ids=True,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_tensors='pt',
)
return tuple((
encoding["input_ids"].flatten(),
encoding["attention_mask"].flatten(),
encoding["token_type_ids"].flatten(),
torch.tensor([torch.tensor(labels).to(int)])
))
def __len__(self):
return len(self.data)
# Returning data
def __getitem__(self, index: int):
# print(index)
data_row = self.data.reset_index().iloc[index]
temp_data = self.encode_text(data_row)
return temp_data
class Learner(nn.Module):
def __init__(self, **args):
"""
:param args:
"""
super(Learner, self).__init__()
self.inner_print = args.get('inner_print')
self.inner_batch_size = args.get('inner_batch_size')
self.outer_update_lr = args.get('outer_update_lr')
self.inner_update_lr = args.get('inner_update_lr')
self.inner_update_step = args.get('inner_update_step')
self.inner_update_step_eval = args.get('inner_update_step_eval')
self.model = args.get('model')
self.device = args.get('device')
# Outer optimizer
self.outer_optimizer = Adam(self.model.parameters(), lr=self.outer_update_lr)
self.model.train()
def forward(self, batch_tasks, training = True, valid_train = True):
"""
batch = [(support TensorDataset, query TensorDataset),
(support TensorDataset, query TensorDataset),
(support TensorDataset, query TensorDataset),
(support TensorDataset, query TensorDataset)]
# support = TensorDataset(all_input_ids, all_attention_mask, all_segment_ids, all_label_ids)
"""
task_accs = []
task_f1 = []
task_recall = []
sum_gradients = []
num_task = len(batch_tasks)
num_inner_update_step = self.inner_update_step if training else self.inner_update_step_eval
# Outer loop tasks
for task_id, task in enumerate(batch_tasks):
support = task[0]
query = task[1]
name = task[2]
# Copying model
fast_model = deepcopy(self.model)
fast_model.to(self.device)
# Inner trainer optimizer
inner_optimizer = Adam(fast_model.parameters(), lr=self.inner_update_lr)
# Creating training data loaders
if len(support) % self.inner_batch_size == 1 :
support_dataloader = DataLoader(support, sampler=RandomSampler(support),
batch_size=self.inner_batch_size,
drop_last=True)
else:
support_dataloader = DataLoader(support, sampler=RandomSampler(support),
batch_size=self.inner_batch_size,
drop_last=False)
# steps_per_epoch=len(support) // self.inner_batch_size
# total_training_steps = steps_per_epoch * 5
# warmup_steps = total_training_steps // 3
#
# scheduler = get_linear_schedule_with_warmup(
# inner_optimizer,
# num_warmup_steps=warmup_steps,
# num_training_steps=total_training_steps
# )
fast_model.train()
# Inner loop training epoch (support set)
if valid_train:
print('----Task',task_id,":", name, '----')
for i in range(0, num_inner_update_step):
all_loss = []
# Inner loop training batch (support set)
for inner_step, batch in enumerate(support_dataloader):
batch = tuple(t.to(self.device) for t in batch)
input_ids, attention_mask, token_type_ids, label_id = batch
# Feed Foward
loss, _, _ = fast_model(input_ids, attention_mask, token_type_ids=token_type_ids, labels = label_id)
# Computing gradients
loss.backward()
# torch.nn.utils.clip_grad_norm_(fast_model.parameters(), max_norm=1)
# Updating inner training parameters
inner_optimizer.step()
inner_optimizer.zero_grad()
# Appending losses
all_loss.append(loss.item())
del batch, input_ids, attention_mask, label_id
torch.cuda.empty_cache()
if valid_train:
if (i+1) % self.inner_print == 0:
print("Inner Loss: ", np.mean(all_loss))
fast_model.to(torch.device('cpu'))
# Inner training phase weights
if training:
meta_weights = list(self.model.parameters())
fast_weights = list(fast_model.parameters())
# Appending gradients
gradients = []
for i, (meta_params, fast_params) in enumerate(zip(meta_weights, fast_weights)):
gradient = meta_params - fast_params
if task_id == 0:
sum_gradients.append(gradient)
else:
sum_gradients[i] += gradient
# Inner test (query set)
fast_model.to(self.device)
fast_model.eval()
if valid_train:
# Inner test (query set)
fast_model.to(self.device)
fast_model.eval()
with torch.no_grad():
# Data loader
query_dataloader = DataLoader(query, sampler=None, batch_size=len(query))
query_batch = iter(query_dataloader).next()
query_batch = tuple(t.to(self.device) for t in query_batch)
q_input_ids, q_attention_mask, q_token_type_ids, q_label_id = query_batch
# Feedfoward
_, _, pre_label_id = fast_model(q_input_ids, q_attention_mask, q_token_type_ids, labels = q_label_id)
# Predictions
pre_label_id = pre_label_id.detach().cpu().squeeze()
# Labels
q_label_id = q_label_id.detach().cpu()
# Calculating metrics
acc = fn.accuracy(pre_label_id, q_label_id).item()
recall = fn.recall(pre_label_id, q_label_id).item(),
f1 = fn.f1_score(pre_label_id, q_label_id).item()
# appending metrics
task_accs.append(acc)
task_f1.append(f1)
task_recall.append(recall)
fast_model.to(torch.device('cpu'))
del fast_model, inner_optimizer
torch.cuda.empty_cache()
print("\n")
print("f1:",np.mean(task_f1))
print("recall:",np.mean(task_recall))
# Updating outer training parameters
if training:
# Mean of gradients
for i in range(0,len(sum_gradients)):
sum_gradients[i] = sum_gradients[i] / float(num_task)
# Indexing parameters to model
for i, params in enumerate(self.model.parameters()):
params.grad = sum_gradients[i]
# Updating parameters
self.outer_optimizer.step()
self.outer_optimizer.zero_grad()
del sum_gradients
gc.collect()
torch.cuda.empty_cache()
if valid_train:
return np.mean(task_accs)
else:
return np.array(0)
# Creating Meta Tasks
class MetaTask(Dataset):
def __init__(self, examples, num_task, k_support, k_query,
tokenizer, training=True, max_seq_length=512,
treat_text =None, **args):
"""
:param samples: list of samples
:param num_task: number of training tasks.
:param k_support: number of classes support samples per task
:param k_query: number of classes query sample per task
"""
self.examples = examples
self.num_task = num_task
self.k_support = k_support
self.k_query = k_query
self.tokenizer = tokenizer
self.max_seq_length = max_seq_length
self.treat_text = treat_text
# Randomly generating tasks
self.create_batch(self.num_task, training)
# Creating batch
def create_batch(self, num_task, training):
self.supports = [] # support set
self.queries = [] # query set
self.task_names = [] # Name of task
self.supports_indexs = [] # index of supports
self.queries_indexs = [] # index of queries
self.num_task=num_task
# Available tasks
domains = self.examples['domain'].unique()
# If not training, create all tasks
if not(training):
self.task_names = domains
num_task = len(self.task_names)
self.num_task=num_task
for b in range(num_task): # For each task,
total_per_class = self.k_support + self.k_query
task_size = 2*self.k_support + 2*self.k_query
# Select a task at random
if training:
domain = random.choice(domains)
self.task_names.append(domain)
else:
domain = self.task_names[b]
# Task data
domainExamples = self.examples[self.examples['domain'] == domain]
# Minimal label quantity
min_per_class = min(domainExamples['label'].value_counts())
if total_per_class > min_per_class:
total_per_class = min_per_class
# Select k_support + k_query task examples
# Sample (n) from each label(class)
selected_examples = domainExamples.groupby("label").sample(total_per_class, replace = False)
# Split data into support (training) and query (testing) sets
s, q = train_test_split(selected_examples,
stratify= selected_examples["label"],
test_size= 2*self.k_query/task_size,
shuffle=True)
# Permutating data
s = s.sample(frac=1)
q = q.sample(frac=1)
# Appending indexes
if not(training):
self.supports_indexs.append(s.index)
self.queries_indexs.append(q.index)
# Creating list of support (training) and query (testing) tasks
self.supports.append(s.to_dict('records'))
self.queries.append(q.to_dict('records'))
# Creating task tensors
def create_feature_set(self, examples):
all_input_ids = torch.empty(len(examples), self.max_seq_length, dtype = torch.long)
all_attention_mask = torch.empty(len(examples), self.max_seq_length, dtype = torch.long)
all_token_type_ids = torch.empty(len(examples), self.max_seq_length, dtype = torch.long)
all_label_ids = torch.empty(len(examples), dtype = torch.long)
for _id, e in enumerate(examples):
all_input_ids[_id], all_attention_mask[_id], all_token_type_ids[_id], all_label_ids[_id] = self.encode_text(e)
return TensorDataset(
all_input_ids,
all_attention_mask,
all_token_type_ids,
all_label_ids
)
# Data encoding
def encode_text(self, example):
comment_text = example["text"]
if self.treat_text:
comment_text = self.treat_text(comment_text)
labels = LABEL_MAP[example["label"]]
encoding = self.tokenizer.encode_plus(
(comment_text, "It is a great text."),
add_special_tokens=True,
max_length=self.max_seq_length,
return_token_type_ids=True,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_tensors='pt',
)
return tuple((
encoding["input_ids"].flatten(),
encoding["attention_mask"].flatten(),
encoding["token_type_ids"].flatten(),
torch.tensor([torch.tensor(labels).to(int)])
))
# Returns data upon calling
def __getitem__(self, index):
support_set = self.create_feature_set(self.supports[index])
query_set = self.create_feature_set(self.queries[index])
name = self.task_names[index]
return support_set, query_set, name
def __len__(self):
return self.num_task
class treat_text:
def __init__(self, patterns):
self.patterns = patterns
def __call__(self,text):
text = unicodedata.normalize("NFKD",str(text))
text = multiple_replace(self.patterns,text.lower())
text = re.sub('(\(.+\))|(\[.+\])|( \d )|(<)|(>)|(- )','', text)
text = re.sub('( +)',' ', text)
text = re.sub('(, ,)|(,,)',',', text)
text = re.sub('(%)|(per cent)',' percent', text)
return text
# Regex multiple replace function
def multiple_replace(dict, text):
# Building regex from dict keys
regex = re.compile("(%s)" % "|".join(map(re.escape, dict.keys())))
# Substitution
return regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], text) |