Spaces:
Build error
Build error
File size: 15,991 Bytes
58dedb9 6755d15 58dedb9 6755d15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import math
import torch
import numpy as np
import pandas as pd
import time
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from copy import deepcopy, copy
from pprint import pprint
import shutil
import datetime
import re
import json
from pathlib import Path
from itertools import chain
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# Fetching pre-trained model and tokenizer
class initializer:
def __init__(self, MODEL_NAME, **config):
self.MODEL_NAME = MODEL_NAME
model = config.get("model")
tokenizer = config.get("tokenizer")
# Model
self.model = model.from_pretrained(MODEL_NAME,
return_dict=True,
output_attentions = False)
# Tokenizer
self.tokenizer = tokenizer.from_pretrained(MODEL_NAME,
do_lower_case = True)
config = {
"model": AutoModelForSequenceClassification,
"tokenizer": AutoTokenizer
}
# Pre-trained model initializer (uncased sciBERT)
initializer_model_scibert = initializer('allenai/scibert_scivocab_uncased', **config)
# initializer_model = initializer('bert-base-uncased', **config)
LABEL_MAP = {'negative': 0,
'not included':0,
'0':0,
0:0,
'excluded':0,
'positive': 1,
'included':1,
'1':1,
1:1,
}
class SLR_DataSet(Dataset):
def __init__(self,
treat_text =None,
etailment_txt =None,
LABEL_MAP= None,
NA = None,
**args):
self.tokenizer = args.get('tokenizer')
self.data = args.get('data').reset_index()
self.max_seq_length = args.get("max_seq_length", 512)
self.INPUT_NAME = args.get("input", 'x')
self.LABEL_NAME = args.get("output", None)
self.treat_text = treat_text
self.etailment_txt = etailment_txt
self.LABEL_MAP=LABEL_MAP
self.NA=NA
if not self.INPUT_NAME in self.data.columns:
self.data[self.INPUT_NAME] = np.nan
# Tokenizing and processing text
def encode_text(self, example):
comment_text = example[self.INPUT_NAME]
if not isinstance(self.treat_text,type(None)):
comment_text = self.treat_text(comment_text)
if example[self.LABEL_NAME] is np.NaN and self.NA != None:
labels = self.NA
elif self.LABEL_NAME != None:
try:
labels = self.LABEL_MAP[example[self.LABEL_NAME]]
except:
labels = -1
# raise TypeError(f"Label passed {example[self.LABEL_NAME]}, is not be in LABEL_MAP")
# print('Not handle LABEL_MAP')
else:
labels = None
if self.etailment_txt:
tensor_data = self.tokenize((comment_text, self.etailment_txt), labels )
else:
tensor_data = self.tokenize((comment_text), labels)
return tensor_data
def tokenize(self, comment_text, labels):
encoding = self.tokenizer.encode_plus(
(comment_text),
add_special_tokens=True,
max_length=self.max_seq_length,
return_token_type_ids=True,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_tensors='pt',
)
if labels != None:
return tuple(((
encoding["input_ids"].flatten(),
encoding["attention_mask"].flatten(),
encoding["token_type_ids"].flatten()
),
torch.tensor([torch.tensor(labels).to(int)])
))
else:
return tuple(((
encoding["input_ids"].flatten(),
encoding["attention_mask"].flatten(),
encoding["token_type_ids"].flatten()
),
torch.empty(0)
))
def __len__(self):
return len(self.data)
# Returning data
def __getitem__(self, index: int):
# print(index)
data_row = self.data.iloc[index]
tensor_data = self.encode_text(data_row)
return tensor_data
from tqdm import tqdm
import gc
from IPython.display import clear_output
from collections import namedtuple
features = namedtuple('features', ['bert', 'feature_map'])
Output = namedtuple('Output', ['loss', 'features', 'logit'])
bert_tuple = namedtuple('bert',['hidden_states', 'attentions'])
class loop():
@classmethod
def train_loop(self, model,device, optimizer, data_train_loader, scheduler = None, data_valid_loader = None,
epochs = 4, print_info = 1000000000, metrics = True, log = None, metrics_print = True):
# Start the model's parameters
table.reset()
model.to(device)
model.train()
# Task epochs (Inner epochs)
for epoch in range(0, epochs):
train_loss, _, out = self.batch_loop(data_train_loader, model, optimizer, device)
if scheduler is not None:
for sched in scheduler:
sched.step()
if (epoch % print_info == 0):
if metrics:
labels = self.map_batch(out[1]).to(int).squeeze()
logits = self.map_batch(out[0]).squeeze()
train_metrics, _ = plot(logits, labels, 0.9)
del labels, logits
train_metrics['Loss'] = torch.Tensor(train_loss).mean().item()
if not isinstance(log,type(None)):
log({"train_"+ x :y for x,y in train_metrics.items()})
table(train_metrics, epoch, "Train")
else:
print("Loss: ", torch.Tensor(train_loss).mean().item())
if data_valid_loader:
valid_loss, _, out = self.eval_loop(data_valid_loader, model, device=device)
if metrics:
global out2
out2 = out
labels = self.map_batch(out[1]).to(int).squeeze()
logits = self.map_batch(out[0]).squeeze()
valid_metrics, _ = plot(logits, labels, 0.9)
valid_metrics['Loss'] = torch.Tensor(valid_loss).mean().item()
del labels, logits
if not isinstance(log,type(None)):
log({"valid_"+ x :y for x,y in train_metrics.items()})
table(valid_metrics, epoch, "Valid")
if metrics_print:
print(table.data_frame().round(4))
else:
print("Valid Loss: ", torch.Tensor(valid_loss).mean().item())
return table.data_frame()
@classmethod
def batch_loop(self, loader, model, optimizer, device):
all_loss = []
features_lst = []
attention_lst = []
logits = []
outputs = []
# Test's Batch loop
for inner_step, batch in enumerate(tqdm(loader,
desc="Train validation | ",
ncols=80)) :
input, output =batch
input = tuple(t.to(device) for t in input)
if isinstance(output, torch.Tensor):
output = output.to(device)
optimizer.zero_grad()
# Predictions
loss, feature, logit = model(input, output)
# compute grads
loss.backward()
# update parameters
optimizer.step()
input = tuple(t.to("cpu") for t in input)
if isinstance(output, torch.Tensor):
output = output.to("cpu")
if isinstance(loss, torch.Tensor):
all_loss.append(loss.to('cpu').detach().clone())
if isinstance(logit, torch.Tensor):
logits.append(logit.to('cpu').detach().clone())
if isinstance(output, torch.Tensor):
outputs.append(output.to('cpu').detach().clone())
if len(feature.feature_map)!=0:
features_lst.append([x.to('cpu').detach().clone() for x in feature.feature_map])
del batch, input, output, loss, feature, logit
# model.to('cpu')
gc.collect()
torch.cuda.empty_cache()
# del model, optimizer
return Output(all_loss, features(None,features_lst), (logits, outputs))
@classmethod
def eval_loop(self, loader, model, device, attention= False, hidden_states=False):
all_loss = []
features_lst = []
attention_lst = []
hidden_states_lst = []
logits = []
outputs = []
model.eval()
with torch.no_grad():
# Test's Batch loop
for inner_step, batch in enumerate(tqdm(loader,
desc="Test validation | ",
ncols=80)) :
input, output =batch
input = tuple(t.to(device) for t in input)
if output.numel()!=0:
# Predictions
loss, feature, logit = model(input, output.to(device),
attention= attention, hidden_states=hidden_states)
else:
# Predictions
loss, feature, logit = model(input,
attention= attention, hidden_states=hidden_states)
input = tuple(t.to("cpu") for t in input)
if isinstance(output, torch.Tensor):
output = output.to("cpu")
if isinstance(loss, torch.Tensor):
all_loss.append(loss.to('cpu').detach().clone())
if isinstance(logit, torch.Tensor):
logits.append(logit.to('cpu').detach().clone())
try:
if not isinstance(feature.bert.attentions, type(None)):
attention_lst.append([x.to('cpu').detach().clone() for x in feature.bert.attentions])
except:
attention_lst = None
try:
if not isinstance(feature.bert.hidden_states, type(None)):
hidden_states_lst.append([x.to('cpu').detach().clone() for x in feature.bert.hidden_states])
except:
hidden_states_lst = None
if isinstance(output, torch.Tensor):
outputs.append(output.to('cpu').detach().clone())
if len(feature.feature_map)!=0:
features_lst.append([x.to('cpu').detach().clone() for x in feature.feature_map])
del batch, input, output, loss, feature, logit
# model.to('cpu')
gc.collect()
torch.cuda.empty_cache()
# del model, optimizer
return Output(all_loss, features(bert_tuple(hidden_states_lst,attention_lst),features_lst), (logits, outputs))
# Process predictions and map the feature_map in tsne
@staticmethod
def map_batch(features):
features = torch.cat(features, dim =0)
# features = np.concatenate(np.array(features,dtype=object)).astype(np.float32)
# features = torch.tensor(features)
return features.detach().clone()
class table:
data = []
index = []
@torch.no_grad()
def __init__(self, data, epochs, name):
self.index.append((epochs, name))
self.data.append(data)
@classmethod
@torch.no_grad()
def data_frame(cls):
clear_output()
index = pd.MultiIndex.from_tuples(cls.index, names=["Epochs", "Data"])
data = pd.DataFrame(cls.data, index=index)
return data
@classmethod
@torch.no_grad()
def reset(cls):
cls.data = []
cls.index = []
from collections import namedtuple
# Declaring namedtuple()
# Pre-trained model
class Encoder(nn.Module):
def __init__(self, layers, freeze_bert, model):
super(Encoder, self).__init__()
# Dummy Parameter
self.dummy_param = nn.Parameter(torch.empty(0))
# Pre-trained model
self.model = deepcopy(model)
# Freezing bert parameters
if freeze_bert:
for param in self.model.parameters():
param.requires_grad = freeze_bert
# Selecting hidden layers of the pre-trained model
old_model_encoder = self.model.encoder.layer
new_model_encoder = nn.ModuleList()
for i in layers:
new_model_encoder.append(old_model_encoder[i])
self.model.encoder.layer = new_model_encoder
# Feed forward
def forward(self, output_attentions=False,output_hidden_states=False, **x):
return self.model(output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
**x)
# Complete model
class SLR_Classifier(nn.Module):
def __init__(self, **data):
super(SLR_Classifier, self).__init__()
# Dummy Parameter
self.dummy_param = nn.Parameter(torch.empty(0))
# Loss function
# Binary Cross Entropy with logits reduced to mean
self.loss_fn = nn.BCEWithLogitsLoss(reduction = 'mean',
pos_weight=torch.FloatTensor([data.get("pos_weight", 2.5)]))
# Pre-trained model
self.Encoder = Encoder(layers = data.get("bert_layers", range(12)),
freeze_bert = data.get("freeze_bert", False),
model = data.get("model"),
)
# Feature Map Layer
self.feature_map = nn.Sequential(
# nn.LayerNorm(self.Encoder.model.config.hidden_size),
nn.BatchNorm1d(self.Encoder.model.config.hidden_size),
# nn.Dropout(data.get("drop", 0.5)),
nn.Linear(self.Encoder.model.config.hidden_size, 200),
nn.Dropout(data.get("drop", 0.5)),
)
# Classifier Layer
self.classifier = nn.Sequential(
# nn.LayerNorm(self.Encoder.model.config.hidden_size),
# nn.Dropout(data.get("drop", 0.5)),
# nn.BatchNorm1d(self.Encoder.model.config.hidden_size),
# nn.Dropout(data.get("drop", 0.5)),
nn.Tanh(),
nn.Linear(200, 1)
)
# Initializing layer parameters
nn.init.normal_(self.feature_map[1].weight, mean=0, std=0.00001)
nn.init.zeros_(self.feature_map[1].bias)
# Feed forward
def forward(self, input, output=None, attention= False, hidden_states=False):
# input, output = batch
input_ids, attention_mask, token_type_ids = input
predict = self.Encoder(output_attentions=attention,
output_hidden_states=hidden_states,
**{"input_ids":input_ids,
"attention_mask":attention_mask,
"token_type_ids":token_type_ids
})
feature_maped = self.feature_map(predict['pooler_output'])
# print(feature_maped)
logit = self.classifier(feature_maped)
# predict = torch.sigmoid(logit)
if not isinstance(output, type(None)):
# Loss function
loss = self.loss_fn(logit.to(torch.float), output.to(torch.float))
return Output(loss, features(predict, feature_maped), logit)
else:
return Output(None, features(predict, feature_maped), logit)
def fit(self, optimizer, data_train_loader, scheduler = None, data_valid_loader = None,
epochs = 4, print_info = 1000000000, metrics = True, log = None, metrics_print = True):
return loop.train_loop(self,
device = self.dummy_param.device,
optimizer=optimizer,
scheduler= scheduler,
data_train_loader=data_train_loader,
data_valid_loader= data_valid_loader,
epochs = epochs,
print_info = print_info,
metrics = metrics,
log= log,
metrics_print=metrics_print)
def evaluate(self, loader, attention= False, hidden_states=False):
# global feature
all_loss, feature, (logits, outputs) = loop.eval_loop(loader, self, self.dummy_param.device,
attention= attention, hidden_states=hidden_states)
logits = loop.map_batch(logits)
if len(outputs) != 0:
outputs = loop.map_batch(outputs)
return Output(np.mean(all_loss), feature, (logits, outputs)) |