File size: 22,465 Bytes
6b71499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
from ML_SLRC import *

import os
import numpy as np
import pandas as pd


from torch.utils.data import  DataLoader
from torch.optim import Adam

import gc
from torchmetrics import functional as fn

import random


from tqdm import tqdm

from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve, auc
import ipywidgets as widgets
from IPython.display import  display, clear_output
import matplotlib.pyplot as plt
import warnings
import torch

import time
from sklearn.manifold import TSNE
from copy import deepcopy
import seaborn as sns
import matplotlib.pylab as plt
import json
from pathlib import Path

import re
from collections import defaultdict

# SEED = 2222

# gen_seed = torch.Generator().manual_seed(SEED)






# Random seed function
def random_seed(value):
    torch.backends.cudnn.deterministic=True
    torch.manual_seed(value)
    torch.cuda.manual_seed(value)
    np.random.seed(value)
    random.seed(value)

# Tasks for meta-learner
def create_batch_of_tasks(taskset, is_shuffle = True, batch_size = 4):
    idxs = list(range(0,len(taskset)))
    if is_shuffle:
        random.shuffle(idxs)
    for i in range(0,len(idxs), batch_size):
        yield [taskset[idxs[i]] for i in range(i, min(i + batch_size,len(taskset)))]


# Prepare data to process by Domain-learner
def prepare_data(data, batch_size, tokenizer,max_seq_length,
                 input = 'text', output = 'label',
                 train_size_per_class = 5, global_datasets = False,
                 treat_text_fun =None):
  data = data.reset_index().drop("index", axis=1)

  if global_datasets:
    global data_train, data_test

  # Sample task for training
  data_train = data.groupby('label').sample(train_size_per_class, replace=False)
  idex = data.index.isin(data_train.index)

  # The Test set to label by the model
  data_test = data


  # Transform in dataset to model
  ## Train
  dataset_train = SLR_DataSet(
    data = data_train.sample(frac=1),
    input = input,
    output = output,
    tokenizer=tokenizer,
    max_seq_length =max_seq_length,
    treat_text =treat_text_fun)

  ## Test
  dataset_test = SLR_DataSet(
    data = data_test,
    input = input,
    output = output,
    tokenizer=tokenizer,
    max_seq_length =max_seq_length,
    treat_text =treat_text_fun)
  
  # Dataloaders
  ## Train 
  data_train_loader = DataLoader(dataset_train,
                           shuffle=True,
                           batch_size=batch_size['train']
                                )
  
  ## Test
  if len(dataset_test) % batch_size['test'] == 1 :
    data_test_loader = DataLoader(dataset_test,
                                    batch_size=batch_size['test'],
                                    drop_last=True)
  else:
    data_test_loader = DataLoader(dataset_test,
                                    batch_size=batch_size['test'],
                                    drop_last=False)

  return data_train_loader, data_test_loader, data_train, data_test


# Meta trainer
def meta_train(data, model, device, Info,
               print_epoch =True,
                Test_resource =None,
                treat_text_fun =None):

  # Meta-learner model
  learner = Learner(model = model, device = device, **Info)
  
  # Testing tasks
  if isinstance(Test_resource, pd.DataFrame):
    test = MetaTask(Test_resource, num_task = 0, k_support=10, k_query=10,
                  training=False,treat_text =treat_text_fun, **Info)


  torch.clear_autocast_cache()
  gc.collect()
  torch.cuda.empty_cache()

  # Meta epoch (Outer epoch)
  for epoch in tqdm(range(Info['meta_epoch']), desc= "Meta epoch ", ncols=80):
      
      # Train tasks
      train = MetaTask(data,
                      num_task = Info['num_task_train'],
                      k_support=Info['k_qry'],
                      k_query=Info['k_spt'],
                      treat_text =treat_text_fun, **Info)

      # Batch of train tasks
      db = create_batch_of_tasks(train, is_shuffle = True, batch_size = Info["outer_batch_size"])

      if print_epoch:
      # Outer loop bach training
        for step, task_batch in enumerate(db):          
            print("\n-----------------Training Mode","Meta_epoch:", epoch ,"-----------------\n")
            
            # meta-feedfoward (outer-feedfoward)
            acc = learner(task_batch, valid_train= print_epoch)
            print('Step:', step, '\ttraining Acc:', acc)
        
        if isinstance(Test_resource, pd.DataFrame):
          # Validating Model
          if ((epoch+1) % 4) + step == 0:
              random_seed(123)
              print("\n-----------------Testing Mode-----------------\n")
              
              # Batch of test tasks
              db_test = create_batch_of_tasks(test, is_shuffle = False, batch_size = 1)
              acc_all_test = []

              # Looping testing tasks
              for test_batch in db_test:
                  acc = learner(test_batch, training = False)
                  acc_all_test.append(acc)

              print('Test acc:', np.mean(acc_all_test))
              del acc_all_test, db_test

              # Restarting training randomly
              random_seed(int(time.time() % 10))

      else:
        for step, task_batch in enumerate(db):
            # meta-feedfoward (outer-feedfoward)
            acc = learner(task_batch, print_epoch, valid_train= print_epoch)

  torch.clear_autocast_cache()
  gc.collect()
  torch.cuda.empty_cache()



def train_loop(data_train_loader, data_test_loader, model, device, epoch = 4, lr = 1, print_info = True, name = 'name', weight_decay = 1):
  # Start the model's parameters
  model_meta = deepcopy(model)
  optimizer = Adam(model_meta.parameters(), lr=lr, weight_decay = weight_decay)

  model_meta.to(device)
  model_meta.train()

  # Task epoch (Inner epoch)
  for i in range(0, epoch):
      all_loss = []

      # Inner training batch (support set)
      for inner_step, batch in enumerate(data_train_loader):
          batch = tuple(t.to(device) for t in batch)
          input_ids, attention_mask,q_token_type_ids, label_id = batch
          
          # Inner Feedfoward
          loss, _, _ = model_meta(input_ids, attention_mask,q_token_type_ids, labels = label_id.squeeze())
          
          # compute grads
          loss.backward()

          # update parameters
          optimizer.step()
          optimizer.zero_grad()
          
          all_loss.append(loss.item())
      

      if (i % 2 == 0) & print_info:
          print("Loss: ", np.mean(all_loss))


  # Test evaluation
  model_meta.eval()
  all_loss = []
  all_acc = []
  features = []
  labels = []
  predi_logit = []

  with torch.no_grad():
      # Test's Batch loop
      for inner_step, batch in enumerate(tqdm(data_test_loader,
                                              desc="Test validation | " + name,
                                              ncols=80)) :
        batch = tuple(t.to(device) for t in batch)
        input_ids, attention_mask,q_token_type_ids, label_id = batch

        # Predictions
        _, feature, _ = model_meta(input_ids, attention_mask,q_token_type_ids, labels = label_id.squeeze())

 #       prediction = prediction.detach().cpu().squeeze()
  #      label_id = label_id.detach().cpu()
        logit = feature[1].detach().cpu()
   #     feature_lat = feature[0].detach().cpu()

#        labels.append(label_id.numpy().squeeze())
#        features.append(feature_lat.numpy())
        predi_logit.append(logit.numpy())

        # Accuracy over the test's bach
#        acc = fn.accuracy(prediction, label_id).item()
 #       all_acc.append(acc)
      del input_ids, attention_mask, label_id, batch

  if print_info:
    print("acc:", np.mean(all_acc))

  model_meta.to('cpu')
  gc.collect()
  torch.cuda.empty_cache()

  del model_meta, optimizer
  
  logits = np.concatenate(np.array(predi_logit,dtype=object))
  logits = torch.tensor(logits.astype(np.float32)).detach().clone()
#  return features, labels, predi_logit

  return logits.detach().clone()
  
# Process predictions and map the feature_map in tsne
def map_feature_tsne(features, labels, predi_logit):
  
  features = np.concatenate(np.array(features,dtype=object))
  features = torch.tensor(features.astype(np.float32)).detach().clone()
  
  labels = np.concatenate(np.array(labels,dtype=object))
  labels = torch.tensor(labels.astype(int)).detach().clone()

  logits = np.concatenate(np.array(predi_logit,dtype=object))
  logits = torch.tensor(logits.astype(np.float32)).detach().clone()

  # Dimention reduction
  X_embedded = TSNE(n_components=2, learning_rate='auto',
                    init='random').fit_transform(features.detach().clone())

  return logits.detach().clone(), X_embedded, labels.detach().clone(), features.detach().clone()
  
def wss_calc(logit, labels, trsh = 0.5):
  
  # Prediction label given the threshold
  predict_trash = torch.sigmoid(logit).squeeze() >= trsh
  
  # Compute confusion matrix values
  CM = confusion_matrix(labels, predict_trash.to(int) )
  tn, fp, fne, tp = CM.ravel()

  P = (tp + fne)  
  N = (tn + fp) 
  recall = tp/(tp+fne)

  # WSS
  wss = (tn + fne)/len(labels) -(1- recall)

  # AWSS
  awss = (tn/N - fne/P)

  return {
      "wss": round(wss,4),
      "awss": round(awss,4),
      "R": round(recall,4),
      "CM": CM
      }


# Compute the metrics
def plot(logits, X_embedded, labels, threshold, show = True,
         namefig = "plot", make_plot = True, print_stats = True, save = True):
  col = pd.MultiIndex.from_tuples([
                                   ("Predict", "0"),
                                   ("Predict", "1")
                                   ])
  index = pd.MultiIndex.from_tuples([
                                   ("Real", "0"),
                                   ("Real", "1")
                                   ])

  predict = torch.sigmoid(logits).detach().clone()

  # Roc curve
  fpr, tpr, thresholds = roc_curve(labels, predict.squeeze())

  # Given by a Recall of 95% (threshold avaliation)
  ## WSS
  ### Index to recall
  idx_wss95 = sum(tpr < 0.95)
  ### threshold
  thresholds95 = thresholds[idx_wss95]

  ### Compute the metrics
  wss95_info = wss_calc(logits,labels, thresholds95 )
  acc_wss95 = fn.accuracy(predict, labels, threshold=thresholds95)
  f1_wss95 = fn.f1_score(predict, labels, threshold=thresholds95)


  # Given by a threshold (recall avaliation)
  ### Compute the metrics
  wss_info = wss_calc(logits,labels, threshold )
  acc_wssR = fn.accuracy(predict, labels, threshold=threshold)
  f1_wssR = fn.f1_score(predict, labels, threshold=threshold)


  metrics= {
      # WSS
      "WSS@95": wss95_info['wss'],
      "AWSS@95": wss95_info['awss'],
      "WSS@R": wss_info['wss'],
      "AWSS@R": wss_info['awss'],
      # Recall
      "Recall_WSS@95": wss95_info['R'],
      "Recall_WSS@R": wss_info['R'],
      # acc
      "acc@95": acc_wss95.item(),
      "acc@R": acc_wssR.item(),
      # f1
      "f1@95": f1_wss95.item(),
      "f1@R": f1_wssR.item(),
      # threshold 95
      "threshold@95": thresholds95
  }

  # Print stats
  if print_stats:
    wss95= f"WSS@95:{wss95_info['wss']}, R: {wss95_info['R']}"
    wss95_adj= f"ASSWSS@95:{wss95_info['awss']}"
    print(wss95)
    print(wss95_adj)
    print('Acc.:', round(acc_wss95.item(), 4))
    print('F1-score:', round(f1_wss95.item(), 4))
    print(f"threshold to wss95: {round(thresholds95, 4)}")
    cm = pd.DataFrame(wss95_info['CM'],
              index=index,
              columns=col)
    
    print("\nConfusion matrix:")
    print(cm)
    print("\n---Metrics with threshold:", threshold, "----\n")
    wss= f"WSS@R:{wss_info['wss']}, R: {wss_info['R']}"
    print(wss)
    wss_adj= f"AWSS@R:{wss_info['awss']}"
    print(wss_adj)
    print('Acc.:', round(acc_wssR.item(), 4))
    print('F1-score:', round(f1_wssR.item(), 4))
    cm = pd.DataFrame(wss_info['CM'],
                index=index,
                columns=col)
      
    print("\nConfusion matrix:")
    print(cm)


  # Plots

  if make_plot:

    fig, axes = plt.subplots(1, 4, figsize=(25,10))
    alpha = torch.squeeze(predict).numpy()

    # TSNE
    p1 = sns.scatterplot(x=X_embedded[:, 0],
                  y=X_embedded[:, 1],
                  hue=labels,
                  alpha=alpha, ax = axes[0]).set_title('Predictions-TSNE', size=20)
    
    
    # WSS@95
    t_wss = predict >= thresholds95
    t_wss = t_wss.squeeze().numpy()
    p2 = sns.scatterplot(x=X_embedded[t_wss, 0],
                  y=X_embedded[t_wss, 1],
                  hue=labels[t_wss],
                  alpha=alpha[t_wss], ax = axes[1]).set_title('WSS@95', size=20)

    # WSS@R
    t = predict >= threshold
    t = t.squeeze().numpy()
    p3 = sns.scatterplot(x=X_embedded[t, 0],
                  y=X_embedded[t, 1],
                  hue=labels[t],
                  alpha=alpha[t], ax = axes[2]).set_title(f'Predictions-threshold {threshold}', size=20)

    # ROC-Curve
    roc_auc = auc(fpr, tpr)
    lw = 2
    axes[3].plot(
      fpr,
      tpr,
      color="darkorange",
      lw=lw,
      label="ROC curve (area = %0.2f)" % roc_auc)
    axes[3].plot([0, 1], [0, 1], color="navy", lw=lw, linestyle="--")
    axes[3].axhline(y=0.95, color='r', linestyle='-')
    # axes[3].set(xlabel="False Positive Rate", ylabel="True Positive Rate")
    axes[3].legend(loc="lower right")
    axes[3].set_title(label= "ROC", size = 20)
    axes[3].set_ylabel("True Positive Rate", fontsize = 15)
    axes[3].set_xlabel("False Positive Rate", fontsize = 15)
    

    if show:
      plt.show()
    
    if save:
      fig.savefig(namefig, dpi=fig.dpi)

  return metrics


def auc_plot(logits,labels, color = "darkorange", label = "test"):
    predict = torch.sigmoid(logits).detach().clone()
    fpr, tpr, thresholds = roc_curve(labels, predict.squeeze())
    roc_auc = auc(fpr, tpr)
    lw = 2

    label = label + str(round(roc_auc,2))
    # print(label)

    plt.plot(
      fpr,
      tpr,
      color=color,
      lw=lw,
      label= label 
      )
    plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--")
    plt.axhline(y=0.95, color='r', linestyle='-')

# Interface to evaluation
class diagnosis():
  def __init__(self, names, Valid_resource, batch_size_test,
   model,Info, device,treat_text_fun=None,start = 0):
    self.names=names
    self.Valid_resource=Valid_resource
    self.batch_size_test=batch_size_test
    self.model=model
    self.start=start
    self.Info = Info
    self.device = device
    self.treat_text_fun = treat_text_fun
    

    # BOX INPUT
    self.value_trash = widgets.FloatText(
        value=0.95,
        description='threshold',
        disabled=False
    )
    self.valueb = widgets.IntText(
        value=10,
        description='size',
        disabled=False
    )

    # Buttons
    self.train_b = widgets.Button(description="Train")
    self.next_b = widgets.Button(description="Next")
    self.eval_b = widgets.Button(description="Evaluation")

    self.hbox = widgets.HBox([self.train_b, self.valueb])

    # Click buttons functions
    self.next_b.on_click(self.Next_button)
    self.train_b.on_click(self.Train_button)
    self.eval_b.on_click(self.Evaluation_button)


  # Next button
  def Next_button(self,p):
    clear_output()
    self.i=self.i+1

    # Select the domain data
    self.domain = self.names[self.i]
    self.data = self.Valid_resource[self.Valid_resource['domain'] == self.domain]
    
    print("Name:", self.domain)
    print(self.data['label'].value_counts())
    display(self.hbox)
    display(self.next_b)


  # Train button
  def Train_button(self, y):
    clear_output()
    print(self.domain)

    # Prepare data for training (domain-learner)
    self.data_train_loader, self.data_test_loader, self.data_train, self.data_test = prepare_data(self.data,
              train_size_per_class = self.valueb.value,
              batch_size = {'train': self.Info['inner_batch_size'],
                            'test': self.batch_size_test},
              max_seq_length = self.Info['max_seq_length'],
              tokenizer = self.Info['tokenizer'],
              input = "text",
              output = "label",
              treat_text_fun=self.treat_text_fun)

    # Train the model and predict in the test set
    self.logits, self.X_embedded, self.labels, self.features = train_loop(self.data_train_loader, self.data_test_loader,
                                                        self.model, self.device,
                                                        epoch = self.Info['inner_update_step'],
                                                        lr=self.Info['inner_update_lr'],
                                                        print_info=True,
                                                        name = self.domain)

    tresh_box = widgets.HBox([self.eval_b, self.value_trash])
    display(self.hbox)
    display(tresh_box)
    display(self.next_b)


  # Evaluation button
  def Evaluation_button(self, te):
    clear_output()
    tresh_box = widgets.HBox([self.eval_b, self.value_trash])

    print(self.domain)
    # print("\n")
    print("-------Train data-------")
    print(data_train['label'].value_counts())
    print("-------Test data-------")
    print(data_test['label'].value_counts())
    # print("\n")
    
    display(self.next_b)
    display(tresh_box)
    display(self.hbox)

    # Compute metrics    
    metrics = plot(self.logits, self.X_embedded, self.labels,
                    threshold=self.Info['threshold'], show = True,
                    namefig= 'test',
                  make_plot = True,
                  print_stats = True,
                  save=False)

  def __call__(self):
    self.i= self.start-1
    clear_output()
    display(self.next_b)




# Simulation attemps of domain learner
def pipeline_simulation(Valid_resource, names_to_valid, path_save,
                        model, Info, device, initializer_model,
                        treat_text_fun=None):
  n_attempt  = 5
  batch_test = 100

  # Create a directory to save informations
  for name in names_to_valid:
    name = re.sub("\.csv", "",name)
    Path(path_save  + name + "/img").mkdir(parents=True, exist_ok=True)

  # Dict to sabe roc curves
  roc_stats = defaultdict(lambda: defaultdict(
      lambda: defaultdict(
          list
          )
      )
  )


  

  all_metrics = []
  # Loop over a list of domains
  for name in names_to_valid:
    
    # Select a domain dataset
    data = Valid_resource[Valid_resource['domain'] == name].reset_index().drop("index", axis=1)

    # Attempts simulation
    for attempt in range(n_attempt):
      print("---"*4,"attempt", attempt, "---"*4)
      
      # Prepare data to pass to the model
      data_train_loader, data_test_loader,  _ , _ = prepare_data(data,
                train_size_per_class = Info['k_spt'],
                batch_size = {'train': Info['inner_batch_size'],
                              'test': batch_test},
                max_seq_length = Info['max_seq_length'],
                tokenizer = Info['tokenizer'],
                input = "text",
                output = "label",
                treat_text_fun=treat_text_fun)

      # Train the model and evaluate on the test set of the domain
      logits, X_embedded, labels, features = train_loop(data_train_loader, data_test_loader,
                                                        model, device,
                                                        epoch = Info['inner_update_step'],
                                                        lr=Info['inner_update_lr'],
                                                        print_info=False,
                                                        name = name)
      
      
      name_domain = re.sub("\.csv", "",name)

      # Compute the metrics
      metrics = plot(logits, X_embedded, labels,
                    threshold=Info['threshold'], show = False,
                    namefig= path_save  + name_domain + "/img/" + str(attempt) + 'plots',
        make_plot = True, print_stats = False, save =  True)

      # Compute the roc-curve
      fpr, tpr, _ = roc_curve(labels, torch.sigmoid(logits).squeeze())
      
      # Save the correspoud information of the domain
      metrics['name'] = name_domain
      metrics['layer_size'] = Info['bert_layers']
      metrics['attempt'] = attempt
      roc_stats[name_domain][str(Info['bert_layers'])]['fpr'].append(fpr.tolist())
      roc_stats[name_domain][str(Info['bert_layers'])]['tpr'].append(tpr.tolist())
      all_metrics.append(metrics)

      # Save the metrics and the roc curve  of the attemp
      pd.DataFrame(all_metrics).to_csv(path_save+ "metrics.csv")
      roc_path =  path_save + "roc_stats.json"
      with open(roc_path, 'w') as fp:
          json.dump(roc_stats, fp)


      del fpr, tpr, logits, X_embedded, labels
      del features, metrics,  _


  # Save the information used to evaluate the validation resource
  save_info = Info.copy()
  save_info['model'] = initializer_model.tokenizer.name_or_path
  save_info.pop("tokenizer")
  save_info.pop("bert_layers")

  info_path =  path_save+"info.json"
  with open(info_path, 'w') as fp:
      json.dump(save_info, fp)


# Loading dataset statistics
def load_data_statistics(paths, names):
  size = []
  pos = []
  neg = []
  for p in paths:
    data = pd.read_csv(p) 
    data = data.dropna()
    # Dataset size
    size.append(len(data))
    # Number of positive labels
    pos.append(data['labels'].value_counts()[1])
    # Number of negative labels
    neg.append(data['labels'].value_counts()[0])
  del data

  info_load = pd.DataFrame({
      "size":size,
      "pos":pos,
      "neg":neg,
      "names":names,
      "paths": paths })
  return info_load

# Loading the datasets
def load_data(train_info_load):

  col = ['abstract','title', 'labels', 'domain']

  data_train = pd.DataFrame(columns=col)
  for p in train_info_load['paths']:  
    data_temp = pd.read_csv(p).loc[:, ['labels', 'title', 'abstract']]
    data_temp = pd.read_csv(p).loc[:, ['labels', 'title', 'abstract']]
    data_temp['domain'] = os.path.basename(p)
    data_train = pd.concat([data_train, data_temp])
    
  data_train['text'] = data_train['title'] + data_train['abstract'].replace(np.nan, '')

  return( data_train \
            .replace({"labels":{0:"negative", 1:'positive'}})\
            .rename({"labels":"label"} , axis=1)\
            .loc[ :,("text","domain","label")]
        )