|
import gradio as gr |
|
import torch |
|
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan |
|
import soundfile as sf |
|
|
|
|
|
model = SpeechT5ForTextToSpeech.from_pretrained("Beehzod/speecht5_finetuned_uz_customData2") |
|
processor = SpeechT5Processor.from_pretrained("Beehzod/speecht5_finetuned_uz_customData2") |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
speaker_embeddings = torch.zeros((1, 512)) |
|
|
|
def text_to_speech(text): |
|
|
|
inputs = processor(text=text, return_tensors="pt") |
|
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) |
|
output_path = "output.wav" |
|
sf.write(output_path, speech.numpy(), 16000) |
|
return output_path |
|
|
|
|
|
interface = gr.Interface( |
|
fn=text_to_speech, |
|
inputs="text", |
|
outputs="audio", |
|
title="Uzbek Text-to-Speech Generator", |
|
description="Enter Uzbek text and generate speech using the finetuned SpeechT5 model." |
|
) |
|
|
|
interface.launch() |
|
|