import gradio as gr import torch from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan import soundfile as sf model = SpeechT5ForTextToSpeech.from_pretrained("Beehzod/speecht5_finetuned_uz_customData2") processor = SpeechT5Processor.from_pretrained("Beehzod/speecht5_finetuned_uz_customData2") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") speaker_embeddings = torch.zeros((1, 512)) def text_to_speech(text): inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) output_path = "output.wav" sf.write(output_path, speech.numpy(), 16000) return output_path interface = gr.Interface( fn=text_to_speech, inputs="text", outputs="audio", title="Uzbek Text-to-Speech Generator", description="Enter Uzbek text and generate speech using the finetuned SpeechT5 model." ) interface.launch()