Spaces:
Runtime error
Runtime error
File size: 8,189 Bytes
2bb21bd 2d61ea6 f6bb466 0137bbd 768b4f3 16ca3cf b3c49d3 6ccedb0 768b4f3 16ca3cf 2bb21bd 93e6bc9 2bb21bd ef7492c 2bb21bd ef7492c 2bb21bd ef7492c 2bb21bd ef7492c 2bb21bd 93e6bc9 d21b068 93e6bc9 adcf5f6 93e6bc9 2bb21bd ca0ea4c c97092f 95b7524 2bb21bd ca0ea4c eddc0ef 2bb21bd 16ca3cf 2bb21bd 1678c48 2bb21bd de05f69 2bb21bd 16ca3cf 2bb21bd adb2981 36206e3 adb2981 2d61ea6 adb2981 768b4f3 0137bbd 744331b 768b4f3 744331b 987752b 91b6656 987752b 768b4f3 0137bbd 768b4f3 2bb21bd 16ca3cf 768b4f3 16ca3cf 768b4f3 16ca3cf 768b4f3 adb2981 768b4f3 4d300d7 6dfd871 4d300d7 2bb21bd 768b4f3 2bb21bd 5c91e18 2bb21bd 768b4f3 57f1b5a 768b4f3 bd2388a 768b4f3 d4f12f9 768b4f3 c5534fa 86d8a1c 16ca3cf d83c819 7977880 768b4f3 3114537 d83c819 16ca3cf 27835ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import gradio as gr
from gradio_client import Client
import os
import json
import re
from moviepy.editor import *
import cv2
hf_token = os.environ.get("HF_TKN")
def extract_firstframe(video_in):
vidcap = cv2.VideoCapture(video_in)
success,image = vidcap.read()
count = 0
while success:
if count == 0:
cv2.imwrite("first_frame.jpg", image) # save first extracted frame as jpg file named first_frame.jpg
else:
break # exit loop after saving first frame
success,image = vidcap.read()
print ('Read a new frame: ', success)
count += 1
print ("Done extracted first frame!")
return "first_frame.jpg"
def extract_audio(video_in):
input_video = video_in
output_audio = 'audio.wav'
# Open the video file and extract the audio
video_clip = VideoFileClip(input_video)
audio_clip = video_clip.audio
# Save the audio as a .wav file
audio_clip.write_audiofile(output_audio, fps=44100) # Use 44100 Hz as the sample rate for .wav files
print("Audio extraction complete.")
return 'audio.wav'
def get_caption_from_kosmos(image_in):
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")
kosmos2_result = kosmos2_client.predict(
image_in, # str (filepath or URL to image) in 'Test Image' Image component
"Detailed", # str in 'Description Type' Radio component
fn_index=4
)
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
with open(kosmos2_result[1], 'r') as f:
data = json.load(f)
reconstructed_sentence = []
for sublist in data:
reconstructed_sentence.append(sublist[0])
full_sentence = ' '.join(reconstructed_sentence)
#print(full_sentence)
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
pattern = r'^Describe this image in detail:\s*(.*)$'
# Apply the regex pattern to extract the description text.
match = re.search(pattern, full_sentence)
if match:
description = match.group(1)
print(description)
else:
print("Unable to locate valid description.")
# Find the last occurrence of "."
last_period_index = description.rfind('.')
# Truncate the string up to the last period
truncated_caption = description[:last_period_index + 1]
# print(truncated_caption)
print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
return truncated_caption
def get_caption(image_in):
client = Client("https://fffiloni-moondream1.hf.space/", hf_token=hf_token)
result = client.predict(
image_in, # filepath in 'image' Image component
"Describe precisely the image in one sentence.", # str in 'Question' Textbox component
#api_name="/answer_question"
api_name="/predict"
)
print(result)
return result
def get_magnet(prompt):
amended_prompt = f"{prompt}"
print(amended_prompt)
client = Client("https://fffiloni-magnet.hf.space/")
result = client.predict(
"facebook/audio-magnet-medium", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component
"", # str in 'Model Path (custom models)' Textbox component
amended_prompt, # str in 'Input Text' Textbox component
3, # float in 'Temperature' Number component
0.9, # float in 'Top-p' Number component
10, # float in 'Max CFG coefficient' Number component
1, # float in 'Min CFG coefficient' Number component
20, # float in 'Decoding Steps (stage 1)' Number component
10, # float in 'Decoding Steps (stage 2)' Number component
10, # float in 'Decoding Steps (stage 3)' Number component
10, # float in 'Decoding Steps (stage 4)' Number component
"prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component
api_name="/predict_full"
)
print(result)
return result[1]
def get_audioldm(prompt):
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
result = client.predict(
prompt, # str in 'Input text' Textbox component
"Low quality. Music.", # str in 'Negative prompt' Textbox component
10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
3.5, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
45, # int | float in 'Seed' Number component
3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
fn_index=1
)
print(result)
audio_result = extract_audio(result)
return audio_result
def get_audiogen(prompt):
client = Client("https://fffiloni-audiogen.hf.space/")
result = client.predict(
prompt,
10,
api_name="/infer"
)
return result
def get_tango(prompt):
try:
client = Client("https://declare-lab-tango.hf.space/")
except:
raise gr.Error("Tango space API is not ready, please try again in few minutes ")
result = client.predict(
prompt, # str representing string value in 'Prompt' Textbox component
100, # int | float representing numeric value between 100 and 200 in 'Steps' Slider component
4, # int | float representing numeric value between 1 and 10 in 'Guidance Scale' Slider component
api_name="/predict"
)
print(result)
return result
def blend_vsfx(video_in, audio_result):
audioClip = AudioFileClip(audio_result)
print(f"AUD: {audioClip.duration}")
clip = VideoFileClip(video_in)
print(f"VID: {clip.duration}")
if clip.duration < audioClip.duration :
audioClip = audioClip.subclip((0.0), (clip.duration))
elif clip.duration > audioClip.duration :
clip = clip.subclip((0.0), (audioClip.duration))
final_clip = clip.set_audio(audioClip)
# Set the output codec
codec = 'libx264'
audio_codec = 'aac'
final_clip.write_videofile('final_video_with_sound.mp4', codec=codec, audio_codec=audio_codec)
return "final_video_with_sound.mp4"
def infer(video_in, chosen_model):
image_in = extract_firstframe(video_in)
caption = get_caption(image_in)
if chosen_model == "MAGNet" :
audio_result = get_magnet(caption)
elif chosen_model == "AudioLDM-2" :
audio_result = get_audioldm(caption)
elif chosen_model == "AudioGen" :
audio_result = get_audiogen(caption)
elif chosen_model == "Tango" :
audio_result = get_tango(caption)
final_res = blend_vsfx(video_in, audio_result)
return audio_result, final_res
css="""
#col-container{
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h2 style="text-align: center;">
Video to SoundFX
</h2>
<p style="text-align: center;">
Get sound effects from a video shot while comparing audio models from image caption.
</p>
""")
with gr.Row():
with gr.Column():
video_in = gr.Video(sources=["upload"], label="Video input")
with gr.Row():
chosen_model = gr.Dropdown(label="Choose a model", choices=["MAGNet", "AudioLDM-2", "AudioGen", "Tango"], value="Tango")
submit_btn = gr.Button("Submit")
with gr.Column():
audio_o = gr.Audio(label="Audio output")
video_o = gr.Video(label="Video with soundFX")
gr.Examples(
examples = ["photoreal-train.mp4", "train-window.mp4", "chinese-new-year-dragon.mp4", "big-sur.mp4"],
inputs = video_in
)
submit_btn.click(
fn=infer,
inputs=[video_in, chosen_model],
outputs=[audio_o, video_o],
concurrency_limit = 2
)
demo.queue(max_size=10).launch(debug=True, show_error=True) |