Spaces:
Sleeping
Sleeping
File size: 28,355 Bytes
b6529a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
import gradio as gr
from mistralai import Mistral
from langchain_community.tools import TavilySearchResults, JinaSearch
import concurrent.futures
import json
import os
import arxiv
from PIL import Image
import io
import base64
from langchain.chains import MapReduceDocumentsChain, ReduceDocumentsChain
from langchain.text_splitter import CharacterTextSplitter
from langchain_mistralai import ChatMistralAI
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain_core.prompts import PromptTemplate
from json_repair import repair_json
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("mistral-community/pixtral-12b")
def count_tokens_in_text(text):
tokens = tokenizer(text, return_tensors="pt", truncation=False, add_special_tokens=True)
return len(tokens["input_ids"][0])
# Set environment variables for Tavily API
os.environ["TAVILY_API_KEY"] = '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'
# Mistral client API keys
client_1 = Mistral(api_key='eLES5HrVqduOE1OSWG6C5XyEUeR7qpXQ')
client_2 = Mistral(api_key='VPqG8sCy3JX5zFkpdiZ7bRSnTLKwngFJ')
client_3 = Mistral(api_key='cvyu5Rdk2lS026epqL4VB6BMPUcUMSgt')
api_key_4 = 'aYls8aj48SOEov8AY1dwp4hr07MsCRFb'
client_4 = ChatMistralAI(api_key=api_key_4, model="pixtral-12b-2409")
# Function to encode images in base64
def encode_image_bytes(image_bytes):
return base64.b64encode(image_bytes).decode('utf-8')
# Function to decode base64 images
def decode_base64_image(base64_str):
image_data = base64.b64decode(base64_str)
return Image.open(io.BytesIO(image_data))
# Process text and images provided by the user
def process_input(text_input, images_base64):
images = []
if images_base64:
for img_data in images_base64:
try:
img = decode_base64_image(img_data)
buffered = io.BytesIO()
img.save(buffered, format="JPEG")
image_base64 = encode_image_bytes(buffered.getvalue())
images.append({"type": "image_url", "image_url": f"data:image/jpeg;base64,{image_base64}"})
except Exception as e:
print(f"Error decoding image: {e}")
return text_input, images
# Search setup function
def setup_search(question):
try:
tavily_tool = TavilySearchResults(max_results=20)
results = tavily_tool.invoke({"query": f"{question}"})
if isinstance(results, list):
return results, 'tavily_tool'
except Exception as e:
print("Error with TavilySearchResults:", e)
try:
jina_tool = JinaSearch()
results = json.loads(str(jina_tool.invoke({"query": f"{question}"})))
if isinstance(results, list):
return results, 'jina_tool'
except Exception as e:
print("Error with JinaSearch:", e)
return [], ''
def lit_obr(text , crit):
api_key = 'vjOgcQPigpidK7njWV5jPidP69CHg5Yg'
model = "pixtral-12b-2409"
client = Mistral(api_key=api_key)
client_4 = ChatMistralAI(api_key=api_key, model=model)
def count_tokens_in_text(text):
tokens = tokenizer(text, return_tensors="pt", truncation=False, add_special_tokens=True)
return len(tokens["input_ids"][0])
prom = """
#####
# Выведи итог строго в формате JSON. Убедись, что:
# - JSON является валидным и имеет правильную вложенность.
# - Все строки (ключи и значения) заключены в двойные кавычки.
# - Нет лишних запятых.
# - Используй формат структуры, приведённой ниже.
#####
{"comparison_table": {"markdown": "| article title | criterion name 1 | criterion name 2 | criterion name 3 |\n|---------------|------------------|------------------|------------------|\n| article title 1 | result | result | result |\n| article title 2 | result | result | result |\n| article title 3 | result | result | result |"},
"quotes": {
"criterion name 1": {
"article title 1": "citation",
"article title 2": "citation",
"article title 3": "citation"
},
"criterion name 2": {
"article title 1": "citation",
"article title 2": "citation",
"article title 3": "citation"
},
"criterion name 3": {
"article title 1": "citation",
"article title 2": "citation",
"article title 3": "citation"
}
},
"conclusion": "result"
}
#####
# Убедись, что:
# - Поле "comparison_table.markdown" содержит корректно отформатированную таблицу с заголовками и данными.
# - Поля "quotes" содержат цитаты по указанным критериям для каждой статьи.
# - Поле "conclusion" включает краткое заключение о сравнении статей.
#
# Если есть неуверенность, уточни формат или структуру перед генерацией.
#####
"""
def process_scientific_articles_for_analysis_1(text, criter_prompts=""):
promt = f"""
Analyze scientific articles based on the criteria provided by the user. Extract relevant data from the text and present a concise comparative review.
Provide a brief literature review in the following format as a table, including article titles (not their indices) in the comparison row.
Represent the comparison in the form of a table, where:
- The first vertical column contains the titles of the articles in a shortened form without losing their meaning, strictly as text, and without indices.
- Subsequent columns contain concise information for each criterion, formulated based on the text of the article. The information should be brief but capture the essence without directly copying the text.
Additionally, below the table, provide full quotes from the text that confirm the data presented in the table:
- Each quote should be presented without any changes or interpretation.
- Quotes must be in the original language of the article.
- Group quotes by articles: start with the article title, followed by the quotes for each criterion.
Ensure the output is clear and useful.
Result requirements:
- The table should only contain concise information extracted from the text in the cells.
- Full quotes must be provided separately, below the table.
- Do not include author names or publication dates in the quotes.
- Both the concise data and the quotes should be presented in the language in which the articles are written.
Start numbering the articles from the first, excluding zero.
Input data:
Articles:
{text}
Criteria:
{criter_prompts}
Result format:
{prom}
"""
chat_response = client.chat.complete(
model=model,
messages= [{ "role": "user", "content": [{ "type": "text", "text": promt}] }]
)
return chat_response.choices[0].message.content
def process_scientific_articles_for_analysis_2(text, images=[], criter_prompts=""):
map_template = f"""
{{docs}}
Analyze the scientific articles based on the criteria provided by the user. Extract the relevant data from the text and present a concise comparative review.
Provide a summary literature review in the following format as a table, including the article titles (not their indices) in the comparison row.
Present the comparisons in the form of a table where:
The first vertical column lists the titles of the articles, shortened without losing their meaning, and in no other format.
Subsequent columns represent the parameters provided below.
Rows contain concise quotes extracted from the text.
Additionally, below the table, provide direct quotes from the text without any summarization or changes that confirm the data presented in the table. These quotes must consist only of sentences from the text, excluding publication dates and author names. If no data is available, state "No data available." Present each quote on a separate line under the corresponding criterion in the table, group the quotes by article, and include the article titles (not indices). Write the quotes in the language in which they appear in the text.
Start numbering the articles from the first (excluding zero). Do not include the authors or publication dates of the articles in the quotes, do not number each quote line, but present each quote on a new line:
{{criter_prompts}}
Give a brief literature review in the following format:
Provide the following JSON structure:
{{comparison_table}}
"""
reduce_template = f"""Следующий текст состоит из нескольких кратких итогов:
{{docs}}
На основе этих кратких итогов, проведи анализ научных статей по введенным критериям, объединяя основные данные и выводя обобщающий литературный обзор.
Выведи результат в следующем формате:
1. Таблица, где:
- Первая колонка по вертикали — это названия статей (сокращенные без потери смысла).
- Последующие колонки — это критерии анализа.
- Строки содержат краткие данные по тексту каждой статьи, соответствующие критериям.
2. Под таблицей укажи прямые цитаты из текста, подтверждающие данные в таблице. Каждую цитату:
- Группируй по статьям.
- Пиши на языке оригинала текста.
- Не включай авторов и даты написания статьи.
- Если данных нет, укажи "Данных нет".
Обязательно предоставь полезный и четкий вывод.
Результат:
Приведи краткий обзор литературы в следующем формате:
{{comparison_table}}
"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=client_4, prompt=map_prompt)
reduce_prompt = PromptTemplate.from_template(reduce_template)
reduce_chain = LLMChain(llm=client_4, prompt=reduce_prompt)
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="docs"
)
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=combine_documents_chain,
token_max=128000,
)
map_reduce_chain = MapReduceDocumentsChain(
llm_chain=map_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name="docs",
return_intermediate_steps=False,
)
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
tokenizer,
chunk_size=100000,
chunk_overlap=14000,
)
split_docs = text_splitter.create_documents([text])
image_descriptions = "\n".join(
[f"Изображение {i+1}: {img['image_url']}" for i, img in enumerate(images)]
)
result = map_reduce_chain.run({"input_documents": split_docs, "images": image_descriptions, "comparison_table": prom, 'criter_prompts': criter_prompts})
return result
def init(text_data, criter):
if count_tokens_in_text(text_data) < 128000:
rezult = process_scientific_articles_for_analysis_1(text_data, criter)
else:
rezult = process_scientific_articles_for_analysis_2(text_data, criter_prompts = criter)
return json.loads(repair_json(rezult[7:-4])) #repair_json(rezult[7:-4])
return init(text , crit)
# Function to extract key topics
def extract_key_topics(content, images=[]):
prompt = f"""
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
```{content}```
LIST IN ENGLISH:
-
"""
message_content = [{"type": "text", "text": prompt}] + list(images)
response = client_1.chat.complete(
model="pixtral-12b-2409",
messages=[{"role": "user", "content": message_content}]
)
return response.choices[0].message.content
def extract_key_topics_with_large_text(content, images=[]):
# Map prompt template for extracting key themes
map_template = f"""
Текст: {{docs}}
Изображения: {{images}}
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
LIST IN ENGLISH:
-
:"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=client_4, prompt=map_prompt)
# Reduce prompt template to further refine and extract key themes
reduce_template = f"""Следующий текст состоит из нескольких кратких итогов:
{{docs}}
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
LIST IN ENGLISH:
-
:"""
reduce_prompt = PromptTemplate.from_template(reduce_template)
reduce_chain = LLMChain(llm=client_4, prompt=reduce_prompt)
# Combine documents chain for Reduce step
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="docs"
)
# ReduceDocumentsChain configuration
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=combine_documents_chain,
token_max=128000,
)
# MapReduceDocumentsChain combining Map and Reduce
map_reduce_chain = MapReduceDocumentsChain(
llm_chain=map_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name="docs",
return_intermediate_steps=False,
)
# Text splitter configuration
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
tokenizer,
chunk_size=100000,
chunk_overlap=14000,
)
# Split the text into documents
split_docs = text_splitter.create_documents([content])
# Include image descriptions (optional, if required by the prompt)
image_descriptions = "\n".join(
[f"Изображение {i+1}: {img['image_url']}" for i, img in enumerate(images)]
)
# Run the summarization chain to extract key themes
key_topics = map_reduce_chain.run({"input_documents": split_docs, "images": image_descriptions})
return key_topics
def search_relevant_articles_arxiv(key_topics, max_articles=10):
articles_by_topic = {}
final_topics = []
def fetch_articles_for_topic(topic):
topic_articles = []
try:
# Fetch articles using arxiv.py based on the topic
search = arxiv.Search(
query=topic,
max_results=max_articles,
sort_by=arxiv.SortCriterion.Relevance
)
for result in search.results():
article_data = {
"title": result.title,
"doi": result.doi,
"summary": result.summary,
"url": result.entry_id,
"pdf_url": result.pdf_url
}
topic_articles.append(article_data)
final_topics.append(topic)
except Exception as e:
print(f"Error fetching articles for topic '{topic}': {e}")
return topic, topic_articles
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
# Use threads to fetch articles for each topic
futures = {executor.submit(fetch_articles_for_topic, topic): topic for topic in key_topics}
for future in concurrent.futures.as_completed(futures):
topic, articles = future.result()
if articles:
articles_by_topic[topic] = articles
return articles_by_topic, list(set(final_topics))
def init(content, images=[]):
if count_tokens_in_text(text=content) < 128_000:
key_topics = extract_key_topics(content, images)
key_topics = [topic.strip("- ") for topic in key_topics.split("\n") if topic]
articles_by_topic, final_topics = search_relevant_articles_arxiv(key_topics)
result_json = json.dumps(articles_by_topic, indent=4)
return final_topics, result_json
else:
key_topics = extract_key_topics_with_large_text(content, images)
key_topics = [topic.strip("- ") for topic in key_topics.split("\n") if topic]
articles_by_topic, final_topics = search_relevant_articles_arxiv(key_topics)
result_json = json.dumps(articles_by_topic, indent=4)
return final_topics, result_json
def process_article_for_summary(text, images=[], compression_percentage=30):
prompt = f"""
You are a commentator.
# article:
{text}
# Instructions:
## Summarize IN RUSSIAN:
In clear and concise language, summarize the key points and themes presented in the article by cutting it by {compression_percentage} percent.
"""
if len(images) >= 8 :
images = images[:7]
message_content = [{"type": "text", "text": prompt}] + images
response = client_3.chat.complete(
model="pixtral-12b-2409",
messages=[{"role": "user", "content": message_content}]
)
return response.choices[0].message.content
def process_large_article_for_summary(text, images=[], compression_percentage=30):
# Map prompt template
map_template = f"""Следующий текст состоит из текста и изображений:
Текст: {{docs}}
Изображения: {{images}}
На основе приведенного материала, выполните сжатие текста, выделяя основные темы и важные моменты.
Уровень сжатия: {compression_percentage}%.
Ответ предоставьте на русском языке в формате Markdown.
Полезный ответ:"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=client_4, prompt=map_prompt)
# Reduce prompt template
reduce_template = f"""Следующий текст состоит из нескольких кратких итогов:
{{docs}}
На основе этих кратких итогов, выполните финальное сжатие текста, объединяя основные темы и ключевые моменты.
Уровень сжатия: {compression_percentage}%.
Результат предоставьте на русском языке в формате Markdown.
Полезный ответ:"""
reduce_prompt = PromptTemplate.from_template(reduce_template)
reduce_chain = LLMChain(llm=client_4, prompt=reduce_prompt)
# Combine documents chain for Reduce step
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="docs"
)
# ReduceDocumentsChain configuration
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=combine_documents_chain,
token_max=128000,
)
# MapReduceDocumentsChain combining Map and Reduce
map_reduce_chain = MapReduceDocumentsChain(
llm_chain=map_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name="docs",
return_intermediate_steps=False,
)
# Text splitter configuration
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
tokenizer,
chunk_size=100000,
chunk_overlap=14000,
)
# Split the text into documents
split_docs = text_splitter.create_documents([text])
# Include image descriptions
image_descriptions = "\n".join(
[f"Изображение {i+1}: {img['image_url']}" for i, img in enumerate(images)]
)
# Run the summarization chain
summary = map_reduce_chain.run({"input_documents": split_docs, "images": image_descriptions})
return summary
def ask_question_to_mistral(text, question, context , images=[]):
prompt = f"Answer the following question without mentioning it or repeating the original text on which the question is asked in style markdown.IN RUSSIAN:\nQuestion: {question}\n\nText:\n{text}"
if len(images) >= 8 :
images = images[:7]
message_content = [{"type": "text", "text": prompt}] + images
response = client_2.chat.complete(
model="pixtral-12b-2409",
messages=[{"role": "user", "content": f'{message_content}\n\nAdditional Context from Web Search:\n{context}'}]
)
return response.choices[0].message.content
def ask_question_to_mistral_with_large_text(text, question, context , images=[]):
# Prompts for QA
map_template = """Следующий текст содержит статью/произведение:
Текст: {docs}
Изображения: {{images}}
На основе приведенного текста, ответьте на следующий вопрос:
Вопрос: {{question}}
Ответ должен быть точным. Пожалуйста, ответьте на русском языке в формате Markdown.
Информация из интернета: {{context}}
Полезный ответ:"""
reduce_template = """Следующий текст содержит несколько кратких ответов на вопрос:
{docs}
Объедините их в финальный ответ. Ответ предоставьте на русском языке в формате Markdown.
Полезный ответ:"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=client_4, prompt=map_prompt)
reduce_prompt = PromptTemplate.from_template(reduce_template)
reduce_chain = LLMChain(llm=client_4, prompt=reduce_prompt)
# Combine documents chain for Reduce step
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="docs"
)
# ReduceDocumentsChain configuration
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=combine_documents_chain,
token_max=128000,
)
# MapReduceDocumentsChain combining Map and Reduce
map_reduce_chain = MapReduceDocumentsChain(
llm_chain=map_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name="docs",
return_intermediate_steps=False,
)
# Text splitter configuration
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
tokenizer,
chunk_size=100000,
chunk_overlap=14000,
)
# Split the text into documents
split_docs = text_splitter.create_documents([text])
# Include image descriptions
image_descriptions = "\n".join(
[f"Изображение {i+1}: {img['image_url']}" for i, img in enumerate(images)]
)
answer = map_reduce_chain.run({"input_documents": split_docs, "question": question , 'context': context , "images": image_descriptions})
return answer
def gradio_interface(text_input, images_base64, task, question, crit, compression_percentage):
text, images = process_input(text_input, images_base64)
if task == "Summarization":
if count_tokens_in_text(text=text) < 128_000:
summary = process_article_for_summary(text, images, compression_percentage)
return {"Summary": summary }
else:
summary= process_large_article_for_summary(text, images, compression_percentage)
return {"Summary": summary, }
elif task == "Question Answering":
if question:
search_tool, tool = setup_search(question)
context = ''
if search_tool:
if tool == 'tavily_tool':
for result in search_tool:
context += f"{result.get('url', 'N/A')} : {result.get('content', 'No content')} \n"
elif tool == 'jina_tool':
for result in search_tool:
context += f"{result.get('link', 'N/A')} : {result.get('snippet', 'No snippet')} : {result.get('content', 'No content')} \n"
if count_tokens_in_text(text + context) < 128_000:
answer = ask_question_to_mistral(text, question, context , images)
return {"Answer": answer }
else:
answer = ask_question_to_mistral_with_large_text(text, question, context , images)
return {"Answer": answer}
else:
return {"Answer": "No question provided." }
elif task == 'Search Article' :
return init(text , images_base64)
elif task == 'Lit Obzor' :
return lit_obr(text , crit)
with gr.Blocks() as demo:
gr.Markdown("## Text Analysis: Summarization or Question Answering")
with gr.Row():
text_input = gr.Textbox(label="Input Text")
images_base64 = gr.Textbox(label="Base64 Images (comma-separated, if any)", placeholder="data:image/jpeg;base64,...", lines=2)
task_choice = gr.Radio(["Summarization", "Question Answering", "Search Article", "Lit Obzor"], label="Select Task")
question_input = gr.Textbox(label="Question (for Question Answering)", visible=False)
lit_crit = gr.Textbox(label="Критерии для лит обзора", visible=False, placeholder="Введите критерии для литературного обзора.")
compression_input = gr.Slider(label="Compression Percentage (for Summarization)", minimum=10, maximum=90, value=30, visible=False)
# Скрытие или отображение компонентов в зависимости от выбора задачи
task_choice.change(lambda choice: (
gr.update(visible=choice == "Question Answering"), # For question input visibility
gr.update(visible=choice == "Summarization"), # For compression percentage visibility
gr.update(visible=choice == "Lit Obzor") # For literary review criteria visibility
), inputs=task_choice, outputs=[question_input, compression_input, lit_crit])
with gr.Row():
result_output = gr.JSON(label="Results")
submit_button = gr.Button("Submit")
submit_button.click(gradio_interface,
inputs=[text_input, images_base64, task_choice, question_input, lit_crit, compression_input],
outputs=result_output)
demo.launch(show_error=True) |