Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from mistralai import Mistral
|
3 |
+
from langchain_community.tools import TavilySearchResults, JinaSearch
|
4 |
+
import concurrent.futures
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import arxiv
|
8 |
+
import fitz # PyMuPDF
|
9 |
+
from docx import Document
|
10 |
+
from PIL import Image
|
11 |
+
import io
|
12 |
+
import base64
|
13 |
+
import mimetypes
|
14 |
+
|
15 |
+
# Set environment variables for Tavily API
|
16 |
+
os.environ["TAVILY_API_KEY"] = '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'
|
17 |
+
|
18 |
+
# Mistral client API keys
|
19 |
+
client_1 = Mistral(api_key='eLES5HrVqduOE1OSWG6C5XyEUeR7qpXQ')
|
20 |
+
client_2 = Mistral(api_key='VPqG8sCy3JX5zFkpdiZ7bRSnTLKwngFJ')
|
21 |
+
client_3 = Mistral(api_key='cvyu5Rdk2lS026epqL4VB6BMPUcUMSgt')
|
22 |
+
|
23 |
+
# Function to encode images in base64
|
24 |
+
def encode_image_bytes(image_bytes):
|
25 |
+
return base64.b64encode(image_bytes).decode('utf-8')
|
26 |
+
|
27 |
+
# Functions to process various file types
|
28 |
+
def process_file(file_path):
|
29 |
+
mime_type, _ = mimetypes.guess_type(file_path)
|
30 |
+
if mime_type == 'application/pdf':
|
31 |
+
return process_pdf(file_path)
|
32 |
+
elif mime_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
|
33 |
+
return process_docx(file_path)
|
34 |
+
elif mime_type == 'text/plain':
|
35 |
+
return process_txt(file_path)
|
36 |
+
else:
|
37 |
+
print(f"Unsupported file type: {mime_type}")
|
38 |
+
return None, []
|
39 |
+
|
40 |
+
def process_pdf(file_path):
|
41 |
+
text = ""
|
42 |
+
images = []
|
43 |
+
pdf_document = fitz.open(file_path)
|
44 |
+
for page_num in range(len(pdf_document)):
|
45 |
+
text += pdf_document[page_num].get_text("text")
|
46 |
+
for _, img in enumerate(pdf_document.get_page_images(page_num, full=True)):
|
47 |
+
xref = img[0]
|
48 |
+
base_image = pdf_document.extract_image(xref)
|
49 |
+
image_bytes = base_image["image"]
|
50 |
+
image_ext = base_image["ext"]
|
51 |
+
base64_image = encode_image_bytes(image_bytes)
|
52 |
+
image_data = f"data:image/{image_ext};base64,{base64_image}"
|
53 |
+
images.append({"type": "image_url", "image_url": image_data})
|
54 |
+
return text, images
|
55 |
+
|
56 |
+
def process_docx(file_path):
|
57 |
+
doc = Document(file_path)
|
58 |
+
text = ""
|
59 |
+
images = []
|
60 |
+
for paragraph in doc.paragraphs:
|
61 |
+
text += paragraph.text + "\n"
|
62 |
+
for rel in doc.part.rels.values():
|
63 |
+
if "image" in rel.target_ref:
|
64 |
+
img_data = rel.target_part.blob
|
65 |
+
img = Image.open(io.BytesIO(img_data))
|
66 |
+
buffered = io.BytesIO()
|
67 |
+
img.save(buffered, format="JPEG")
|
68 |
+
image_base64 = encode_image_bytes(buffered.getvalue())
|
69 |
+
images.append({"type": "image_url", "image_url": f"data:image/jpeg;base64,{image_base64}"})
|
70 |
+
return text, images
|
71 |
+
|
72 |
+
def process_txt(file_path):
|
73 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
74 |
+
text = file.read()
|
75 |
+
return text, []
|
76 |
+
|
77 |
+
# Search setup function
|
78 |
+
def setup_search(question):
|
79 |
+
try:
|
80 |
+
tavily_tool = TavilySearchResults(max_results=20)
|
81 |
+
results = tavily_tool.invoke({"query": f"{question}"})
|
82 |
+
if isinstance(results, list):
|
83 |
+
return results, 'tavily_tool'
|
84 |
+
except Exception as e:
|
85 |
+
print("Error with TavilySearchResults:", e)
|
86 |
+
try:
|
87 |
+
jina_tool = JinaSearch()
|
88 |
+
results = json.loads(str(jina_tool.invoke({"query": f"{question}"})))
|
89 |
+
if isinstance(results, list):
|
90 |
+
return results, 'jina_tool'
|
91 |
+
except Exception as e:
|
92 |
+
print("Error with JinaSearch:", e)
|
93 |
+
return [], ''
|
94 |
+
|
95 |
+
# Function to extract key topics
|
96 |
+
def extract_key_topics(content, images=[]):
|
97 |
+
prompt = f"""
|
98 |
+
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
|
99 |
+
|
100 |
+
```{content}```
|
101 |
+
|
102 |
+
LIST IN ENGLISH:
|
103 |
+
-
|
104 |
+
"""
|
105 |
+
message_content = [{"type": "text", "text": prompt}] + images
|
106 |
+
response = client_1.chat.complete(
|
107 |
+
model="pixtral-12b-2409",
|
108 |
+
messages=[{"role": "user", "content": message_content}]
|
109 |
+
)
|
110 |
+
return response.choices[0].message.content
|
111 |
+
|
112 |
+
def search_relevant_articles_arxiv(key_topics, max_articles=100):
|
113 |
+
articles_by_topic = {}
|
114 |
+
final_topics = []
|
115 |
+
|
116 |
+
def fetch_articles_for_topic(topic):
|
117 |
+
topic_articles = []
|
118 |
+
try:
|
119 |
+
# Fetch articles using arxiv.py based on the topic
|
120 |
+
search = arxiv.Search(
|
121 |
+
query=topic,
|
122 |
+
max_results=max_articles,
|
123 |
+
sort_by=arxiv.SortCriterion.Relevance
|
124 |
+
)
|
125 |
+
for result in search.results():
|
126 |
+
article_data = {
|
127 |
+
"title": result.title,
|
128 |
+
"doi": result.doi,
|
129 |
+
"summary": result.summary,
|
130 |
+
"url": result.entry_id,
|
131 |
+
"pdf_url": result.pdf_url
|
132 |
+
}
|
133 |
+
topic_articles.append(article_data)
|
134 |
+
final_topics.append(topic)
|
135 |
+
except Exception as e:
|
136 |
+
print(f"Error fetching articles for topic '{topic}': {e}")
|
137 |
+
|
138 |
+
return topic, topic_articles
|
139 |
+
|
140 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
|
141 |
+
# Use threads to fetch articles for each topic
|
142 |
+
futures = {executor.submit(fetch_articles_for_topic, topic): topic for topic in key_topics}
|
143 |
+
for future in concurrent.futures.as_completed(futures):
|
144 |
+
topic, articles = future.result()
|
145 |
+
if articles:
|
146 |
+
articles_by_topic[topic] = articles
|
147 |
+
|
148 |
+
return articles_by_topic, list(set(final_topics))
|
149 |
+
|
150 |
+
# Initialize process for text analysis
|
151 |
+
def init(content, images=[]):
|
152 |
+
key_topics = extract_key_topics(content, images)
|
153 |
+
key_topics = [topic.strip("- ") for topic in key_topics.split("\n") if topic]
|
154 |
+
articles_by_topic, final_topics = search_relevant_articles_arxiv(key_topics)
|
155 |
+
result_json = json.dumps(articles_by_topic, indent=4)
|
156 |
+
return final_topics, result_json
|
157 |
+
|
158 |
+
# Summarization function
|
159 |
+
def process_article_for_summary(text, images=[], compression_percentage=30):
|
160 |
+
prompt = f"""
|
161 |
+
You are a commentator.
|
162 |
+
# article:
|
163 |
+
{text}
|
164 |
+
|
165 |
+
# Instructions:
|
166 |
+
## Summarize:
|
167 |
+
In clear and concise language, summarize the key points and themes presented in the article by cutting it by {compression_percentage} percent in the markdown format.
|
168 |
+
|
169 |
+
"""
|
170 |
+
message_content = [{"type": "text", "text": prompt}] + images
|
171 |
+
response = client_3.chat.complete(
|
172 |
+
model="pixtral-12b-2409",
|
173 |
+
messages=[{"role": "user", "content": message_content}]
|
174 |
+
)
|
175 |
+
return response.choices[0].message.content
|
176 |
+
|
177 |
+
# Question answering function
|
178 |
+
def ask_question_to_mistral(text, question, images=[]):
|
179 |
+
prompt = f"Answer the following question without mentioning it or repeating the original text on which the question is asked in style markdown.IN RUSSIAN:\nQuestion: {question}\n\nText:\n{text}"
|
180 |
+
message_content = [{"type": "text", "text": prompt}] + images
|
181 |
+
search_tool, tool = setup_search(question)
|
182 |
+
context = ''
|
183 |
+
if search_tool:
|
184 |
+
if tool == 'tavily_tool':
|
185 |
+
for result in search_tool:
|
186 |
+
context += f"{result.get('url', 'N/A')} : {result.get('content', 'No content')} \n"
|
187 |
+
elif tool == 'jina_tool':
|
188 |
+
for result in search_tool:
|
189 |
+
context += f"{result.get('link', 'N/A')} : {result.get('snippet', 'No snippet')} : {result.get('content', 'No content')} \n"
|
190 |
+
response = client_2.chat.complete(
|
191 |
+
model="pixtral-12b-2409",
|
192 |
+
messages=[{"role": "user", "content": f'{message_content}\n\nAdditional Context from Web Search:\n{context}'}]
|
193 |
+
)
|
194 |
+
return response.choices[0].message.content
|
195 |
+
|
196 |
+
# Gradio interface
|
197 |
+
def gradio_interface(file, task, question, compression_percentage):
|
198 |
+
if file:
|
199 |
+
text, images = process_file(file.name)
|
200 |
+
else:
|
201 |
+
text, images = "", []
|
202 |
+
|
203 |
+
topics, articles_json = init(text, images)
|
204 |
+
|
205 |
+
if task == "Summarization":
|
206 |
+
summary = process_article_for_summary(text, images, compression_percentage)
|
207 |
+
return {"Topics": topics, "Summary": summary, "Articles": articles_json}
|
208 |
+
elif task == "Question Answering":
|
209 |
+
if question:
|
210 |
+
answer = ask_question_to_mistral(text, question, images)
|
211 |
+
return {"Topics": topics, "Answer": answer, "Articles": articles_json}
|
212 |
+
else:
|
213 |
+
return {"Topics": topics, "Answer": "No question provided.", "Articles": articles_json}
|
214 |
+
|
215 |
+
with gr.Blocks() as demo:
|
216 |
+
gr.Markdown("## Text Analysis: Summarization or Question Answering")
|
217 |
+
with gr.Row():
|
218 |
+
file_input = gr.File(label="Upload File")
|
219 |
+
task_choice = gr.Radio(["Summarization", "Question Answering"], label="Select Task")
|
220 |
+
question_input = gr.Textbox(label="Question (for Question Answering)", visible=False)
|
221 |
+
compression_input = gr.Slider(label="Compression Percentage (for Summarization)", minimum=10, maximum=90, value=30, visible=False)
|
222 |
+
|
223 |
+
task_choice.change(lambda choice: (gr.update(visible=choice == "Question Answering"),
|
224 |
+
gr.update(visible=choice == "Summarization")),
|
225 |
+
inputs=task_choice, outputs=[question_input, compression_input])
|
226 |
+
|
227 |
+
with gr.Row():
|
228 |
+
result_output = gr.JSON(label="Results")
|
229 |
+
|
230 |
+
submit_button = gr.Button("Submit")
|
231 |
+
submit_button.click(gradio_interface, [file_input, task_choice, question_input, compression_input], result_output)
|
232 |
+
|
233 |
+
demo.launch()
|