Spaces:
Runtime error
Runtime error
Create server/transformer_details.py
Browse files- server/transformer_details.py +269 -0
server/transformer_details.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utilities for interfacing with the attentions from the front end.
|
3 |
+
"""
|
4 |
+
import torch
|
5 |
+
from typing import List, Union
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
|
8 |
+
from transformer_formatter import TransformerOutputFormatter
|
9 |
+
from utils.token_processing import reshape
|
10 |
+
from spacyface import (
|
11 |
+
BertAligner,
|
12 |
+
GPT2Aligner,
|
13 |
+
RobertaAligner,
|
14 |
+
DistilBertAligner,
|
15 |
+
auto_aligner
|
16 |
+
)
|
17 |
+
|
18 |
+
from transformers import (
|
19 |
+
BertForMaskedLM,
|
20 |
+
GPT2LMHeadModel,
|
21 |
+
RobertaForMaskedLM,
|
22 |
+
DistilBertForMaskedLM,
|
23 |
+
)
|
24 |
+
|
25 |
+
from utils.f import delegates, pick, memoize
|
26 |
+
|
27 |
+
def get_cls(class_name):
|
28 |
+
cls_type = {
|
29 |
+
'bert-base-uncased': BertDetails,
|
30 |
+
'bert-base-cased': BertDetails,
|
31 |
+
'bert-large-uncased': BertDetails,
|
32 |
+
'bert-large-cased': BertDetails,
|
33 |
+
'gpt2': GPT2Details,
|
34 |
+
'gpt2-medium': GPT2Details,
|
35 |
+
'gpt2-large': GPT2Details,
|
36 |
+
'roberta-base': RobertaDetails,
|
37 |
+
'roberta-large': RobertaDetails,
|
38 |
+
'roberta-large-mnli': RobertaDetails,
|
39 |
+
'roberta-base-openai-detector': RobertaDetails,
|
40 |
+
'roberta-large-openai-detector': RobertaDetails,
|
41 |
+
'distilbert-base-uncased': DistilBertDetails,
|
42 |
+
'distilbert-base-uncased-distilled-squad': DistilBertDetails,
|
43 |
+
'distilgpt2': GPT2Details,
|
44 |
+
'distilroberta-base': RobertaDetails,
|
45 |
+
}
|
46 |
+
return cls_type[class_name]
|
47 |
+
|
48 |
+
@memoize
|
49 |
+
def from_pretrained(model_name):
|
50 |
+
"""Convert model name into appropriate transformer details"""
|
51 |
+
try: out = get_cls(model_name).from_pretrained(model_name)
|
52 |
+
except KeyError: raise KeyError(f"The model name of '{model_name}' either does not exist or is currently not supported")
|
53 |
+
|
54 |
+
return out
|
55 |
+
|
56 |
+
|
57 |
+
class TransformerBaseDetails(ABC):
|
58 |
+
""" All API calls will interact with this class to get the hidden states and attentions for any input sentence."""
|
59 |
+
|
60 |
+
def __init__(self, model, aligner):
|
61 |
+
self.model = model
|
62 |
+
self.aligner = aligner
|
63 |
+
self.model.eval()
|
64 |
+
self.forward_inputs = ['input_ids', 'attention_mask']
|
65 |
+
|
66 |
+
@classmethod
|
67 |
+
def from_pretrained(cls, model_name: str):
|
68 |
+
raise NotImplementedError(
|
69 |
+
"""Inherit from this class and specify the Model and Aligner to use"""
|
70 |
+
)
|
71 |
+
|
72 |
+
def att_from_sentence(self, s: str, mask_attentions=False) -> TransformerOutputFormatter:
|
73 |
+
"""Get formatted attention from a single sentence input"""
|
74 |
+
tokens = self.aligner.tokenize(s)
|
75 |
+
return self.att_from_tokens(tokens, s, add_special_tokens=True, mask_attentions=mask_attentions)
|
76 |
+
|
77 |
+
def att_from_tokens(
|
78 |
+
self, tokens: List[str], orig_sentence, add_special_tokens=False, mask_attentions=False
|
79 |
+
) -> TransformerOutputFormatter:
|
80 |
+
"""Get formatted attention from a list of tokens, using the original sentence for getting Spacy Metadata"""
|
81 |
+
ids = self.aligner.convert_tokens_to_ids(tokens)
|
82 |
+
|
83 |
+
# For GPT2, add the beginning of sentence token to the input. Note that this will work on all models but XLM
|
84 |
+
bost = self.aligner.bos_token_id
|
85 |
+
clst = self.aligner.cls_token_id
|
86 |
+
if (bost is not None) and (bost != clst) and add_special_tokens:
|
87 |
+
ids.insert(0, bost)
|
88 |
+
|
89 |
+
inputs = self.aligner.prepare_for_model(ids, add_special_tokens=add_special_tokens, return_tensors="pt")
|
90 |
+
parsed_input = self.format_model_input(inputs, mask_attentions=mask_attentions)
|
91 |
+
output = self.model(parsed_input['input_ids'], attention_mask=parsed_input['attention_mask'])
|
92 |
+
return self.format_model_output(inputs, orig_sentence, output)
|
93 |
+
|
94 |
+
def format_model_output(self, inputs, sentence:str, output, topk=5):
|
95 |
+
"""Convert model output to the desired format.
|
96 |
+
Formatter additionally needs access to the tokens and the original sentence
|
97 |
+
"""
|
98 |
+
hidden_state, attentions, contexts, logits = self.select_outputs(output)
|
99 |
+
|
100 |
+
words, probs = self.logits2words(logits, topk)
|
101 |
+
|
102 |
+
tokens = self.view_ids(inputs["input_ids"])
|
103 |
+
toks = self.aligner.meta_from_tokens(sentence, tokens, perform_check=False)
|
104 |
+
|
105 |
+
formatted_output = TransformerOutputFormatter(
|
106 |
+
sentence,
|
107 |
+
toks,
|
108 |
+
inputs["special_tokens_mask"],
|
109 |
+
attentions,
|
110 |
+
hidden_state,
|
111 |
+
contexts,
|
112 |
+
words,
|
113 |
+
probs.tolist()
|
114 |
+
)
|
115 |
+
return formatted_output
|
116 |
+
|
117 |
+
def select_outputs(self, output):
|
118 |
+
"""Extract the desired hidden states as passed by a particular model through the output
|
119 |
+
In all cases, we care for:
|
120 |
+
- hidden state embeddings (tuple of n_layers + 1)
|
121 |
+
- attentions (tuple of n_layers)
|
122 |
+
- contexts (tuple of n_layers)
|
123 |
+
- Top predicted words
|
124 |
+
- Probabilities of top predicted words
|
125 |
+
"""
|
126 |
+
logits, hidden_state, attentions, contexts = output
|
127 |
+
|
128 |
+
return hidden_state, attentions, contexts, logits
|
129 |
+
|
130 |
+
def format_model_input(self, inputs, mask_attentions=False):
|
131 |
+
"""Parse the input for the model according to what is expected in the forward pass.
|
132 |
+
If not otherwise defined, outputs a dict containing the keys:
|
133 |
+
{'input_ids', 'attention_mask'}
|
134 |
+
"""
|
135 |
+
return pick(self.forward_inputs, self.parse_inputs(inputs, mask_attentions=mask_attentions))
|
136 |
+
|
137 |
+
def logits2words(self, logits, topk=5):
|
138 |
+
probs, idxs = torch.topk(torch.softmax(logits.squeeze(0), 1), topk)
|
139 |
+
words = [self.aligner.convert_ids_to_tokens(i) for i in idxs]
|
140 |
+
return words, probs
|
141 |
+
|
142 |
+
def view_ids(self, ids: Union[List[int], torch.Tensor]) -> List[str]:
|
143 |
+
"""View what the tokenizer thinks certain ids are"""
|
144 |
+
if type(ids) == torch.Tensor:
|
145 |
+
# Remove batch dimension
|
146 |
+
ids = ids.squeeze(0).tolist()
|
147 |
+
|
148 |
+
out = self.aligner.convert_ids_to_tokens(ids)
|
149 |
+
return out
|
150 |
+
|
151 |
+
def parse_inputs(self, inputs, mask_attentions=False):
|
152 |
+
"""Parse the output from `tokenizer.prepare_for_model` to the desired attention mask from special tokens
|
153 |
+
Args:
|
154 |
+
- inputs: The output of `tokenizer.prepare_for_model`.
|
155 |
+
A dict with keys: {'special_token_mask', 'token_type_ids', 'input_ids'}
|
156 |
+
- mask_attentions: Flag indicating whether to mask the attentions or not
|
157 |
+
Returns:
|
158 |
+
Dict with keys: {'input_ids', 'token_type_ids', 'attention_mask', 'special_tokens_mask'}
|
159 |
+
Usage:
|
160 |
+
```
|
161 |
+
s = "test sentence"
|
162 |
+
# from raw sentence to tokens
|
163 |
+
tokens = tokenizer.tokenize(s)
|
164 |
+
# From tokens to ids
|
165 |
+
ids = tokenizer.convert_tokens_to_ids(tokens)
|
166 |
+
# From ids to input
|
167 |
+
inputs = tokenizer.prepare_for_model(ids, return_tensors='pt')
|
168 |
+
# Parse the input. Optionally mask the special tokens from the analysis.
|
169 |
+
parsed_input = parse_inputs(inputs)
|
170 |
+
# Run the model, pick from this output whatever inputs you want
|
171 |
+
from utils.f import pick
|
172 |
+
out = model(**pick(['input_ids'], parse_inputs(inputs)))
|
173 |
+
```
|
174 |
+
"""
|
175 |
+
|
176 |
+
out = inputs.copy()
|
177 |
+
|
178 |
+
# DEFINE SPECIAL TOKENS MASK
|
179 |
+
if "special_tokens_mask" not in inputs.keys():
|
180 |
+
special_tokens = set([self.aligner.unk_token_id, self.aligner.cls_token_id, self.aligner.sep_token_id, self.aligner.bos_token_id, self.aligner.eos_token_id, self.aligner.pad_token_id])
|
181 |
+
in_ids = inputs['input_ids'][0]
|
182 |
+
special_tok_mask = [1 if int(i) in special_tokens else 0 for i in in_ids]
|
183 |
+
inputs['special_tokens_mask'] = special_tok_mask
|
184 |
+
|
185 |
+
if mask_attentions:
|
186 |
+
out["attention_mask"] = torch.tensor(
|
187 |
+
[int(not i) for i in inputs.get("special_tokens_mask")]
|
188 |
+
).unsqueeze(0)
|
189 |
+
else:
|
190 |
+
out["attention_mask"] = torch.tensor(
|
191 |
+
[1 for i in inputs.get("special_tokens_mask")]
|
192 |
+
).unsqueeze(0)
|
193 |
+
|
194 |
+
return out
|
195 |
+
|
196 |
+
|
197 |
+
class BertDetails(TransformerBaseDetails):
|
198 |
+
@classmethod
|
199 |
+
def from_pretrained(cls, model_name: str):
|
200 |
+
return cls(
|
201 |
+
BertForMaskedLM.from_pretrained(
|
202 |
+
model_name,
|
203 |
+
output_attentions=True,
|
204 |
+
output_hidden_states=True,
|
205 |
+
output_additional_info=True,
|
206 |
+
),
|
207 |
+
BertAligner.from_pretrained(model_name),
|
208 |
+
)
|
209 |
+
|
210 |
+
|
211 |
+
class GPT2Details(TransformerBaseDetails):
|
212 |
+
@classmethod
|
213 |
+
def from_pretrained(cls, model_name: str):
|
214 |
+
return cls(
|
215 |
+
GPT2LMHeadModel.from_pretrained(
|
216 |
+
model_name,
|
217 |
+
output_attentions=True,
|
218 |
+
output_hidden_states=True,
|
219 |
+
output_additional_info=True,
|
220 |
+
),
|
221 |
+
GPT2Aligner.from_pretrained(model_name),
|
222 |
+
)
|
223 |
+
|
224 |
+
def select_outputs(self, output):
|
225 |
+
logits, _ , hidden_states, att, contexts = output
|
226 |
+
return hidden_states, att, contexts, logits
|
227 |
+
|
228 |
+
class RobertaDetails(TransformerBaseDetails):
|
229 |
+
|
230 |
+
@classmethod
|
231 |
+
def from_pretrained(cls, model_name: str):
|
232 |
+
return cls(
|
233 |
+
RobertaForMaskedLM.from_pretrained(
|
234 |
+
model_name,
|
235 |
+
output_attentions=True,
|
236 |
+
output_hidden_states=True,
|
237 |
+
output_additional_info=True,
|
238 |
+
),
|
239 |
+
RobertaAligner.from_pretrained(model_name),
|
240 |
+
)
|
241 |
+
|
242 |
+
class DistilBertDetails(TransformerBaseDetails):
|
243 |
+
def __init__(self, model, aligner):
|
244 |
+
super().__init__(model, aligner)
|
245 |
+
self.forward_inputs = ['input_ids', 'attention_mask']
|
246 |
+
|
247 |
+
@classmethod
|
248 |
+
def from_pretrained(cls, model_name: str):
|
249 |
+
return cls(
|
250 |
+
DistilBertForMaskedLM.from_pretrained(
|
251 |
+
model_name,
|
252 |
+
output_attentions=True,
|
253 |
+
output_hidden_states=True,
|
254 |
+
output_additional_info=True,
|
255 |
+
),
|
256 |
+
DistilBertAligner.from_pretrained(model_name),
|
257 |
+
)
|
258 |
+
|
259 |
+
def select_outputs(self, output):
|
260 |
+
"""Extract the desired hidden states as passed by a particular model through the output
|
261 |
+
In all cases, we care for:
|
262 |
+
- hidden state embeddings (tuple of n_layers + 1)
|
263 |
+
- attentions (tuple of n_layers)
|
264 |
+
- contexts (tuple of n_layers)
|
265 |
+
"""
|
266 |
+
logits, hidden_states, attentions, contexts = output
|
267 |
+
|
268 |
+
contexts = tuple([c.permute(0, 2, 1, 3).contiguous() for c in contexts])
|
269 |
+
return hidden_states, attentions, contexts, logits
|