Start-GPT's picture
Create app.py
9ef2dd5 verified
import nltk
nltk.download('punkt')
nltk.download('stopwords')
import streamlit as st
import pickle
import string
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
tk = pickle.load(open("vectorizer.pkl", 'rb'))
model = pickle.load(open("model.pkl", 'rb'))
st.title("SMS Spam Detection Model")
st.write("*Made with ❤️‍🔥 by Shrudex👨🏻‍💻*")
input_sms = st.text_input("Enter the SMS")
if st.button('Predict'):
# 1. preprocess
transformed_sms = transform_text(input_sms)
# 2. vectorize
vector_input = tk.transform([transformed_sms])
# 3. predict
result = model.predict(vector_input)[0]
# 4. Display
if result == 1:
st.header("Spam")
else:
st.header("Not Spam")