from comfydeploy import ComfyDeploy import asyncio import os import gradio as gr from PIL import Image import requests import dotenv from io import BytesIO import random # from gradio_imageslider import ImageSlider dotenv.load_dotenv() client = ComfyDeploy(bearer_auth=os.environ['API_KEY']) deployment_id = os.environ['DEPLOYMENT_ID'] def get_gradio_component(class_type): component_map = { 'ComfyUIDeployExternalText': gr.Textbox, 'ComfyUIDeployExternalImage': gr.Image, 'ComfyUIDeployExternalImageAlpha': gr.Image, 'ComfyUIDeployExternalNumber': gr.Number, 'ComfyUIDeployExternalNumberInt': gr.Number, 'ComfyUIDeployExternalLora': gr.Textbox, 'ComfyUIDeployExternalCheckpoint': gr.Textbox, 'ComfyDeployWebscoketImageInput': gr.Image, 'ComfyUIDeployExternalImageBatch': gr.File, 'ComfyUIDeployExternalVideo': gr.Video, 'ComfyUIDeployExternalBoolean': gr.Checkbox, 'ComfyUIDeployExternalNumberSlider': gr.Slider, } return component_map.get(class_type, gr.Textbox) # Default to Textbox if not found with gr.Blocks() as demo: gr.Markdown(""" # ComfyDeploy Gradio Interface This is a Gradio interface for a ComfyDeploy workflow. You can interact with the deployed model using the inputs below. To clone this workflow, visit: [ComfyDeploy Gradio Flux](https://www.comfydeploy.com/share/comfy-deploy-gradio-flux) ## Example usage of ComfyDeploy SDK: ```python from comfydeploy import ComfyDeploy import os # Initialize the client client = ComfyDeploy(bearer_auth=os.environ['API_KEY']) # Run the model inputs = { 'prompt': 'A beautiful landscape', 'negative_prompt': 'ugly, blurry', 'width': 512, 'height': 512 } res = client.run.create( request={ "deployment_id": deployment_id, "inputs": inputs } ) # Get the results run_id = res.object.run_id result = client.run.get(run_id=run_id) ``` """) def randomSeed(num_digits=15): range_start = 10 ** (num_digits - 1) range_end = (10**num_digits) - 1 return random.randint(range_start, range_end) # Function to update inputs def get_inputs(): res = client.deployment.get_input_definition(id=deployment_id) input_definitions = res.response_bodies gradio_inputs = [] random_seeds = [] for input_def in input_definitions: component_class = get_gradio_component(input_def.class_type) kwargs = { "label": input_def.input_id, "value": input_def.default_value } print(kwargs) if input_def.class_type == 'ComfyUIDeployExternalNumberSlider': kwargs.update({ "minimum": input_def.min_value, "maximum": input_def.max_value }) elif input_def.class_type in ['ComfyUIDeployExternalImage', 'ComfyUIDeployExternalImageAlpha', 'ComfyDeployWebscoketImageInput']: kwargs["type"] = "filepath" elif input_def.class_type == 'ComfyUIDeployExternalImageBatch': kwargs["file_count"] = "multiple" elif input_def.class_type == 'ComfyUIDeployExternalNumberInt': kwargs["precision"] = 0 if "seed" in input_def.input_id: with gr.Row(): kwargs["value"] = randomSeed() input = component_class(**kwargs, scale=6) randomize_button = gr.Button("Randomize", size="sm") def randomize_seed(input): return randomSeed() randomize_button.click(fn=randomize_seed, inputs=input, outputs=input) gradio_inputs.append(input) random_seeds.append(input) # print(kwargs) else: gradio_inputs.append(component_class(**kwargs)) return gradio_inputs, input_definitions, random_seeds with gr.Blocks() as demo: gr.Markdown(""" # ComfyDeploy Gradio Interface This is a demo Gradio interface for a ComfyUI workflow deployed on ComfyDeploy as backend and Gradio as frontend. GitHub: [Source Code](https://github.com/comfy-deploy/comfyui-deploy-gradio-demo) To clone this ComfyUI workflow and deploy, visit: [ComfyDeploy Flux Workflow Demo](https://www.comfydeploy.com/share/comfy-deploy-gradio-flux) Model Using - flux schnell - [Workflow Modified from markury](https://civitai.com/models/618997/simpleadvanced-flux1-comfyui-workflows) - [Optional lora form ogkai, nux](https://civitai.com/models/636355/flux-detailer) ComfyDeploy deploy any ComfyUI workflow, install any custom nodes and models. *subject to individual custom nodes and models licenses* """) with gr.Row(): with gr.Column(scale=1): @gr.render() def update_inputs(): inputs, input_definitions, random_seeds = get_inputs() submit_button = gr.Button("Submit") async def main(*args, progress=gr.Progress()): inputs = {input_def.input_id: arg for input_def, arg in zip(input_definitions, args)} for key, value in inputs.items(): if isinstance(value, list) and all(isinstance(url, str) for url in value): inputs[key] = [requests.get(url).content for url in value] elif isinstance(value, str) and value.startswith('http'): inputs[key] = requests.get(value).content res = await client.run.create_async( request={ "deployment_id": deployment_id, "inputs": inputs }) images = [] text = "" outputs = [ images, text ] while True: if res.object is not None: res2 = await client.run.get_async(run_id=res.object.run_id) print("checking ", res2.object.progress, res2.object.live_status) progress_value = res2.object.progress if res2.object.progress is not None else 0 progress(progress_value, desc=f"{res2.object.live_status if res2.object.live_status is not None else 'Cold starting...'}") if res2.object is not None and res2.object.status == "success": # print(res2) for output in res2.object.outputs: print(output.data.images) if output.data.images: urls = [image.url for image in output.data.images] for url in urls: response = requests.get(url) img = Image.open(BytesIO(response.content)) outputs[0].append(img) elif output.data.text: print(output.data.text) outputs[1] += "\n\n" + "\n".join(output.data.text) break await asyncio.sleep(2) random_seed_output = [] for random_seed in random_seeds: random_seed_output.append(randomSeed()) return outputs + random_seed_output submit_button.click(fn=main, inputs=inputs, outputs=output_components+random_seeds) with gr.Column(scale=1): output_components = [ gr.Gallery(), gr.Textbox(label="Text Output"), ] gr.Markdown(""" ## Example usage of ComfyDeploy SDK: ```python from comfydeploy import ComfyDeploy import os # Initialize the client client = ComfyDeploy(bearer_auth=os.environ['API_KEY']) # Run the model inputs = { 'prompt': 'A beautiful landscape', 'negative_prompt': 'ugly, blurry', 'width': 512, 'height': 512 } res = client.run.create( request={ "deployment_id": deployment_id, "inputs": inputs } ) # Get the results run_id = res.object.run_id result = client.run.get(run_id=run_id) """) if __name__ == "__main__": demo.launch(share=True)