Spaces:
Paused
Paused
File size: 1,240 Bytes
f74b786 26099c5 f74b786 32e14fa 26099c5 f74b786 f9f46fa f74b786 7534d98 f74b786 26099c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from fastapi import FastAPI
from transformers import pipeline
import torch
# Create a new FastAPI app instance
app = FastAPI(docs_url="/")
#gpu = torch.device("cuda")
gpu = 0 if torch.cuda.is_available() else -1
# Initialize the text generation pipeline
# This function will be able to generate text
# given an input.
pipe = pipeline("text2text-generation", model="gpt2",trust_remote_code=True,device=gpu)
# Define a function to handle the GET request at `/generate`
# The generate() function is defined as a FastAPI route that takes a
# string parameter called text. The function generates text based on the input
# using the pipeline() object, and returns a JSON response containing the
# generated text under the key "output"
@app.get("/generate")
def generate(text: str):
"""
Using the text2text-generation pipeline from `transformers`, generate text
from the given input text. The model used is `google/flan-t5-small`, which
can be found [here](<https://huggingface.co/google/flan-t5-small>).
"""
# Use the pipeline to generate text from the given input text
output = pipe(text)
print(output)
# Return the generated text in a JSON response
return {"output": output[0]["generated_text"]}
|