Spaces:
Sleeping
Sleeping
Intradiction
commited on
Commit
•
494624c
1
Parent(s):
c00c585
Parse SA pred str
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModel, BertForSequenceClassification, AlbertForSequenceClassification, DebertaForSequenceClassification, AutoModelForSequenceClassification, RobertaForSequenceClassification
|
3 |
from peft.auto import AutoPeftModelForSequenceClassification
|
@@ -7,7 +8,20 @@ from huggingface_hub import hf_hub_download
|
|
7 |
import plotly.express as px
|
8 |
import pandas as pd
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
|
13 |
#tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
@@ -28,13 +42,13 @@ SentimentAnalysis_LORA_pipe = pipeline("sentiment-analysis", model=sa_merged_mod
|
|
28 |
|
29 |
#text class models
|
30 |
def distilBERTnoLORA_fn(text):
|
31 |
-
return distilBERTnoLORA_pipe(text)
|
32 |
|
33 |
def distilBERTwithLORA_fn(text):
|
34 |
-
return SentimentAnalysis_LORA_pipe(text)
|
35 |
|
36 |
def distilBERTUntrained_fn(text):
|
37 |
-
return distilBERTUntrained_pipe(text)
|
38 |
|
39 |
|
40 |
# Handle calls to ALBERT---------------------------------------------
|
@@ -335,7 +349,7 @@ with gr.Blocks(
|
|
335 |
TextClassUntrained = gr.Textbox(label = "Training Informaiton")
|
336 |
|
337 |
with gr.Row(variant="panel"):
|
338 |
-
TextClassOut1 = gr.Textbox(label=
|
339 |
TextClassNoLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 27.95 mins")
|
340 |
|
341 |
with gr.Row(variant="panel"):
|
|
|
1 |
+
import json
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline, AutoTokenizer, AutoModel, BertForSequenceClassification, AlbertForSequenceClassification, DebertaForSequenceClassification, AutoModelForSequenceClassification, RobertaForSequenceClassification
|
4 |
from peft.auto import AutoPeftModelForSequenceClassification
|
|
|
8 |
import plotly.express as px
|
9 |
import pandas as pd
|
10 |
|
11 |
+
# Parse sentiment analysis pipeline results
|
12 |
+
def parse_pipe_sa(pipe_out_text: str):
|
13 |
+
output_list = list(pipe_out_text)
|
14 |
+
pipe_label = output_list[0]['label']
|
15 |
+
pipe_score = output_list[0]['score']
|
16 |
|
17 |
+
parsed_prediction = 'NULL'
|
18 |
+
|
19 |
+
if pipe_label == 'NEGATIVE' or pipe_label == 'LABEL_0':
|
20 |
+
parsed_prediction = f'This model thinks the sentiment is negative with a confidence score of {pipe_score}'
|
21 |
+
elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_1':
|
22 |
+
parsed_prediction = f'This model thinks the sentiment is positive with a confidence score of {pipe_score}'
|
23 |
+
|
24 |
+
return parsed_prediction
|
25 |
|
26 |
loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
|
27 |
#tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
|
|
42 |
|
43 |
#text class models
|
44 |
def distilBERTnoLORA_fn(text):
|
45 |
+
return parse_pipe_sa(distilBERTnoLORA_pipe(text))
|
46 |
|
47 |
def distilBERTwithLORA_fn(text):
|
48 |
+
return parse_pipe_sa(SentimentAnalysis_LORA_pipe(text))
|
49 |
|
50 |
def distilBERTUntrained_fn(text):
|
51 |
+
return parse_pipe_sa(distilBERTUntrained_pipe(text))
|
52 |
|
53 |
|
54 |
# Handle calls to ALBERT---------------------------------------------
|
|
|
349 |
TextClassUntrained = gr.Textbox(label = "Training Informaiton")
|
350 |
|
351 |
with gr.Row(variant="panel"):
|
352 |
+
TextClassOut1 = gr.Textbox(label="Conventionaly Trained Model")
|
353 |
TextClassNoLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 27.95 mins")
|
354 |
|
355 |
with gr.Row(variant="panel"):
|