Intradiction commited on
Commit
494624c
1 Parent(s): c00c585

Parse SA pred str

Browse files
Files changed (1) hide show
  1. app.py +18 -4
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
  from transformers import pipeline, AutoTokenizer, AutoModel, BertForSequenceClassification, AlbertForSequenceClassification, DebertaForSequenceClassification, AutoModelForSequenceClassification, RobertaForSequenceClassification
3
  from peft.auto import AutoPeftModelForSequenceClassification
@@ -7,7 +8,20 @@ from huggingface_hub import hf_hub_download
7
  import plotly.express as px
8
  import pandas as pd
9
 
 
 
 
 
 
10
 
 
 
 
 
 
 
 
 
11
 
12
  loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
13
  #tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
@@ -28,13 +42,13 @@ SentimentAnalysis_LORA_pipe = pipeline("sentiment-analysis", model=sa_merged_mod
28
 
29
  #text class models
30
  def distilBERTnoLORA_fn(text):
31
- return distilBERTnoLORA_pipe(text)
32
 
33
  def distilBERTwithLORA_fn(text):
34
- return SentimentAnalysis_LORA_pipe(text)
35
 
36
  def distilBERTUntrained_fn(text):
37
- return distilBERTUntrained_pipe(text)
38
 
39
 
40
  # Handle calls to ALBERT---------------------------------------------
@@ -335,7 +349,7 @@ with gr.Blocks(
335
  TextClassUntrained = gr.Textbox(label = "Training Informaiton")
336
 
337
  with gr.Row(variant="panel"):
338
- TextClassOut1 = gr.Textbox(label= "Conventionaly Trained Model")
339
  TextClassNoLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 27.95 mins")
340
 
341
  with gr.Row(variant="panel"):
 
1
+ import json
2
  import gradio as gr
3
  from transformers import pipeline, AutoTokenizer, AutoModel, BertForSequenceClassification, AlbertForSequenceClassification, DebertaForSequenceClassification, AutoModelForSequenceClassification, RobertaForSequenceClassification
4
  from peft.auto import AutoPeftModelForSequenceClassification
 
8
  import plotly.express as px
9
  import pandas as pd
10
 
11
+ # Parse sentiment analysis pipeline results
12
+ def parse_pipe_sa(pipe_out_text: str):
13
+ output_list = list(pipe_out_text)
14
+ pipe_label = output_list[0]['label']
15
+ pipe_score = output_list[0]['score']
16
 
17
+ parsed_prediction = 'NULL'
18
+
19
+ if pipe_label == 'NEGATIVE' or pipe_label == 'LABEL_0':
20
+ parsed_prediction = f'This model thinks the sentiment is negative with a confidence score of {pipe_score}'
21
+ elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_1':
22
+ parsed_prediction = f'This model thinks the sentiment is positive with a confidence score of {pipe_score}'
23
+
24
+ return parsed_prediction
25
 
26
  loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
27
  #tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
 
42
 
43
  #text class models
44
  def distilBERTnoLORA_fn(text):
45
+ return parse_pipe_sa(distilBERTnoLORA_pipe(text))
46
 
47
  def distilBERTwithLORA_fn(text):
48
+ return parse_pipe_sa(SentimentAnalysis_LORA_pipe(text))
49
 
50
  def distilBERTUntrained_fn(text):
51
+ return parse_pipe_sa(distilBERTUntrained_pipe(text))
52
 
53
 
54
  # Handle calls to ALBERT---------------------------------------------
 
349
  TextClassUntrained = gr.Textbox(label = "Training Informaiton")
350
 
351
  with gr.Row(variant="panel"):
352
+ TextClassOut1 = gr.Textbox(label="Conventionaly Trained Model")
353
  TextClassNoLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 27.95 mins")
354
 
355
  with gr.Row(variant="panel"):