Th3r0 commited on
Commit
8077ebf
1 Parent(s): b3206d8

app.py update with NLI model and skeleton code for remaining models

Browse files
Files changed (1) hide show
  1. app.py +79 -32
app.py CHANGED
@@ -5,22 +5,63 @@ from peft import AutoPeftModelForSequenceClassification
5
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
6
  loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
7
 
 
 
 
 
8
  #pretrained models
9
- #Textclass_pipe = pipeline()
10
  #STSmodel_pipe = pipeline()
11
  #NLImodel_pipe = pipeline()
12
 
13
- # Handle calls to DistilBERT no LORA
 
14
  distilBERTnoLORA_pipe = pipeline(model="Intradiction/text_classification_NoLORA")
15
  distilBERTwithLORA_pipe = pipeline("sentiment-analysis", model=loraModel, tokenizer=tokenizer)
16
 
17
-
18
  def distilBERTnoLORA_fn(text):
19
  return distilBERTnoLORA_pipe(text)
20
 
21
  def distilBERTwithLORA_fn(text):
22
  return distilBERTwithLORA_pipe(text)
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def chat1(message,history):
25
  history = history or []
26
  message = message.lower()
@@ -32,9 +73,6 @@ def chat1(message,history):
32
  history.append((message, response))
33
  return history, history
34
 
35
- chatbot = gr.Chatbot()
36
- chatbot1 = gr.Chatbot()
37
- chatbot2 = gr.Chatbot()
38
 
39
  with gr.Blocks(
40
  title="",
@@ -76,29 +114,30 @@ with gr.Blocks(
76
 
77
  with gr.Column():
78
  with gr.Row(variant="panel"):
79
- out = gr.Textbox(label= " DistilBERT no LoRA")
80
  gr.Markdown("""<div>
81
  <span><center><B>Training Information</B><center></span>
82
  <span><br><br><br><br><br></span>
83
  </div>""")
84
 
85
  with gr.Row(variant="panel"):
86
- out1 = gr.Textbox(label= " DistilBERT with LoRA")
87
  gr.Markdown("""<div>
88
  <span><center><B>Training Information</B><center></span>
89
  <span><br><br><br><br><br></span>
90
  </div>""")
91
 
92
  with gr.Row(variant="panel"):
93
- out2 = gr.Textbox(label= " LoRA Fine Tuned Model")
94
  gr.Markdown("""<div>
95
  <span><center><B>Training Information</B><center></span>
96
  <span><br><br><br><br><br></span>
97
  </div>""")
98
 
99
- btn.click(fn=distilBERTnoLORA_fn, inputs=inp, outputs=out)
100
- btn.click(fn=distilBERTwithLORA_fn, inputs=inp, outputs=out1)
101
- btn.click(fn=chat1, inputs=inp, outputs=out2)
 
102
 
103
  with gr.Tab("Natrual Language Infrencing"):
104
  with gr.Row():
@@ -115,21 +154,21 @@ with gr.Blocks(
115
  with gr.Column(scale=0.3,variant="panel"):
116
  nli_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
117
  nli_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
118
- btn = gr.Button("Run")
119
  gr.Examples(
120
  [
121
- "placeholder text",
122
- "placeholder text",
123
- "placeholder text",
124
  ],
125
  nli_p1,
126
  label="Try asking",
127
  )
128
  gr.Examples(
129
  [
130
- "placeholder text",
131
- "placeholder text",
132
- "placeholder text",
133
  ],
134
  nli_p2,
135
  label="Try asking",
@@ -137,25 +176,29 @@ with gr.Blocks(
137
 
138
  with gr.Column():
139
  with gr.Row(variant="panel"):
140
- out = gr.Textbox(label= " DistilBERT no LoRA")
141
  gr.Markdown("""<div>
142
  <span><center><B>Training Information</B><center></span>
143
  <span><br><br><br><br><br></span>
144
  </div>""")
145
 
146
  with gr.Row(variant="panel"):
147
- out1 = gr.Textbox(label= " DistilBERT with LoRA")
148
  gr.Markdown("""<div>
149
  <span><center><B>Training Information</B><center></span>
150
  <span><br><br><br><br><br></span>
151
  </div>""")
152
 
153
  with gr.Row(variant="panel"):
154
- out2 = gr.Textbox(label= " LoRA Fine Tuned Model")
155
  gr.Markdown("""<div>
156
  <span><center><B>Training Information</B><center></span>
157
  <span><br><br><br><br><br></span>
158
  </div>""")
 
 
 
 
159
 
160
  with gr.Tab("Sematic Text Similarity"):
161
  with gr.Row():
@@ -172,21 +215,21 @@ with gr.Blocks(
172
  with gr.Column(scale=0.3,variant="panel"):
173
  sts_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
174
  sts_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
175
- btn = gr.Button("Run")
176
  gr.Examples(
177
  [
178
- "placeholder text",
179
- "placeholder text",
180
- "placeholder text",
181
  ],
182
  sts_p1,
183
  label="Try asking",
184
  )
185
  gr.Examples(
186
  [
187
- "placeholder text",
188
- "placeholder text",
189
- "placeholder text",
190
  ],
191
  sts_p2,
192
  label="Try asking",
@@ -194,25 +237,29 @@ with gr.Blocks(
194
 
195
  with gr.Column():
196
  with gr.Row(variant="panel"):
197
- out = gr.Textbox(label= " DistilBERT no LoRA")
198
  gr.Markdown("""<div>
199
  <span><center><B>Training Information</B><center></span>
200
  <span><br><br><br><br><br></span>
201
  </div>""")
202
 
203
  with gr.Row(variant="panel"):
204
- out1 = gr.Textbox(label= " DistilBERT with LoRA")
205
  gr.Markdown("""<div>
206
  <span><center><B>Training Information</B><center></span>
207
  <span><br><br><br><br><br></span>
208
  </div>""")
209
 
210
  with gr.Row(variant="panel"):
211
- out2 = gr.Textbox(label= " LoRA Fine Tuned Model")
212
  gr.Markdown("""<div>
213
  <span><center><B>Training Information</B><center></span>
214
  <span><br><br><br><br><br></span>
215
  </div>""")
 
 
 
 
216
 
217
  with gr.Tab("More information"):
218
  gr.Markdown("stuff to add")
 
5
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
6
  loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
7
 
8
+ tokenizer1 = AutoTokenizer.from_pretrained("albert-base-v2")
9
+
10
+
11
+
12
  #pretrained models
 
13
  #STSmodel_pipe = pipeline()
14
  #NLImodel_pipe = pipeline()
15
 
16
+ # Handle calls to DistilBERT
17
+ distilBERTUntrained_pipe = pipeline("sentiment-analysis", model="bert-base-uncased")
18
  distilBERTnoLORA_pipe = pipeline(model="Intradiction/text_classification_NoLORA")
19
  distilBERTwithLORA_pipe = pipeline("sentiment-analysis", model=loraModel, tokenizer=tokenizer)
20
 
21
+ #text class models
22
  def distilBERTnoLORA_fn(text):
23
  return distilBERTnoLORA_pipe(text)
24
 
25
  def distilBERTwithLORA_fn(text):
26
  return distilBERTwithLORA_pipe(text)
27
 
28
+ def distilBERTUntrained_fn(text):
29
+ return distilBERTUntrained_pipe(text)
30
+
31
+
32
+ # Handle calls to ALBERT
33
+ ALbertUntrained_pipe = pipeline("text-classification", model="albert-base-v2")
34
+ AlbertnoLORA_pipe = pipeline(model="Intradiction/NLI-Conventional-Fine-Tuning")
35
+ #AlbertwithLORA_pipe = pipeline()
36
+
37
+ #NLI models
38
+ def AlbertnoLORA_fn(text1, text2):
39
+ return AlbertnoLORA_pipe(text1, text2)
40
+
41
+ def AlbertwithLORA_fn(text1, text2):
42
+ return ("working2")
43
+
44
+ def AlbertUntrained_fn(text1, text2):
45
+ return ALbertUntrained_pipe(text1,text2)
46
+
47
+
48
+ # Handle calls to Deberta
49
+ #DebertaUntrained_pipe = pipeline()
50
+ #DebertanoLORA_pipe = pipeline()
51
+ #DebertawithLORA_pipe = pipeline()
52
+
53
+ #STS models
54
+ def DebertanoLORA_fn(text1, text2):
55
+ return ("working3")
56
+
57
+ def DebertawithLORA_fn(text1, text2):
58
+ return ("working2")
59
+
60
+ def DebertaUntrained_fn(text1, text2):
61
+ return ("working3")
62
+
63
+
64
+ #placeholder
65
  def chat1(message,history):
66
  history = history or []
67
  message = message.lower()
 
73
  history.append((message, response))
74
  return history, history
75
 
 
 
 
76
 
77
  with gr.Blocks(
78
  title="",
 
114
 
115
  with gr.Column():
116
  with gr.Row(variant="panel"):
117
+ TextClassOut = gr.Textbox(label= "Untrained Base Model")
118
  gr.Markdown("""<div>
119
  <span><center><B>Training Information</B><center></span>
120
  <span><br><br><br><br><br></span>
121
  </div>""")
122
 
123
  with gr.Row(variant="panel"):
124
+ TextClassOut1 = gr.Textbox(label= "Conventionaly Trained Model")
125
  gr.Markdown("""<div>
126
  <span><center><B>Training Information</B><center></span>
127
  <span><br><br><br><br><br></span>
128
  </div>""")
129
 
130
  with gr.Row(variant="panel"):
131
+ TextClassOut2 = gr.Textbox(label= "LoRA Fine Tuned Model")
132
  gr.Markdown("""<div>
133
  <span><center><B>Training Information</B><center></span>
134
  <span><br><br><br><br><br></span>
135
  </div>""")
136
 
137
+ btn.click(fn=distilBERTUntrained_fn, inputs=inp, outputs=TextClassOut)
138
+ btn.click(fn=distilBERTnoLORA_fn, inputs=inp, outputs=TextClassOut1)
139
+ btn.click(fn=distilBERTwithLORA_fn, inputs=inp, outputs=TextClassOut2)
140
+
141
 
142
  with gr.Tab("Natrual Language Infrencing"):
143
  with gr.Row():
 
154
  with gr.Column(scale=0.3,variant="panel"):
155
  nli_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
156
  nli_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
157
+ nli_btn = gr.Button("Run")
158
  gr.Examples(
159
  [
160
+ "I am with my friends",
161
+ "People like apples",
162
+ "Dogs like bones",
163
  ],
164
  nli_p1,
165
  label="Try asking",
166
  )
167
  gr.Examples(
168
  [
169
+ "I am happy",
170
+ "Apples are good",
171
+ "Bones like dogs",
172
  ],
173
  nli_p2,
174
  label="Try asking",
 
176
 
177
  with gr.Column():
178
  with gr.Row(variant="panel"):
179
+ NLIOut = gr.Textbox(label= "Untrained Base Model")
180
  gr.Markdown("""<div>
181
  <span><center><B>Training Information</B><center></span>
182
  <span><br><br><br><br><br></span>
183
  </div>""")
184
 
185
  with gr.Row(variant="panel"):
186
+ NLIOut1 = gr.Textbox(label= "Conventionaly Trained Model")
187
  gr.Markdown("""<div>
188
  <span><center><B>Training Information</B><center></span>
189
  <span><br><br><br><br><br></span>
190
  </div>""")
191
 
192
  with gr.Row(variant="panel"):
193
+ NLIOut2 = gr.Textbox(label= "LoRA Fine Tuned Model")
194
  gr.Markdown("""<div>
195
  <span><center><B>Training Information</B><center></span>
196
  <span><br><br><br><br><br></span>
197
  </div>""")
198
+
199
+ nli_btn.click(fn=AlbertUntrained_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut)
200
+ nli_btn.click(fn=AlbertnoLORA_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut1)
201
+ nli_btn.click(fn=AlbertwithLORA_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut2)
202
 
203
  with gr.Tab("Sematic Text Similarity"):
204
  with gr.Row():
 
215
  with gr.Column(scale=0.3,variant="panel"):
216
  sts_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
217
  sts_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
218
+ sts_btn = gr.Button("Run")
219
  gr.Examples(
220
  [
221
+ "the ball is green",
222
+ "i dont like apples",
223
+ "our air is clean becase of trees",
224
  ],
225
  sts_p1,
226
  label="Try asking",
227
  )
228
  gr.Examples(
229
  [
230
+ "the green ball",
231
+ "apples are great",
232
+ "trees produce oxygen",
233
  ],
234
  sts_p2,
235
  label="Try asking",
 
237
 
238
  with gr.Column():
239
  with gr.Row(variant="panel"):
240
+ sts_out = gr.Textbox(label= "Untrained Base Model")
241
  gr.Markdown("""<div>
242
  <span><center><B>Training Information</B><center></span>
243
  <span><br><br><br><br><br></span>
244
  </div>""")
245
 
246
  with gr.Row(variant="panel"):
247
+ sts_out1 = gr.Textbox(label= "Conventionaly Trained Model")
248
  gr.Markdown("""<div>
249
  <span><center><B>Training Information</B><center></span>
250
  <span><br><br><br><br><br></span>
251
  </div>""")
252
 
253
  with gr.Row(variant="panel"):
254
+ sts_out2 = gr.Textbox(label= "LoRA Fine Tuned Model")
255
  gr.Markdown("""<div>
256
  <span><center><B>Training Information</B><center></span>
257
  <span><br><br><br><br><br></span>
258
  </div>""")
259
+
260
+ sts_btn.click(fn=DebertaUntrained_fn, inputs=[sts_p1,sts_p2], outputs=sts_out)
261
+ sts_btn.click(fn=DebertanoLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out1)
262
+ sts_btn.click(fn=DebertawithLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out2)
263
 
264
  with gr.Tab("More information"):
265
  gr.Markdown("stuff to add")