BestWishYsh commited on
Commit
1d873c6
·
1 Parent(s): bbecd5e
.gitignore DELETED
@@ -1,13 +0,0 @@
1
- auto_evals/
2
- venv/
3
- __pycache__/
4
- .env
5
- .ipynb_checkpoints
6
- *ipynb
7
- .vscode/
8
-
9
- eval-queue/
10
- eval-results/
11
- eval-queue-bk/
12
- eval-results-bk/
13
- logs/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.pre-commit-config.yaml DELETED
@@ -1,53 +0,0 @@
1
- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- default_language_version:
16
- python: python3
17
-
18
- ci:
19
- autofix_prs: true
20
- autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
21
- autoupdate_schedule: quarterly
22
-
23
- repos:
24
- - repo: https://github.com/pre-commit/pre-commit-hooks
25
- rev: v4.3.0
26
- hooks:
27
- - id: check-yaml
28
- - id: check-case-conflict
29
- - id: detect-private-key
30
- - id: check-added-large-files
31
- args: ['--maxkb=1000']
32
- - id: requirements-txt-fixer
33
- - id: end-of-file-fixer
34
- - id: trailing-whitespace
35
-
36
- - repo: https://github.com/PyCQA/isort
37
- rev: 5.12.0
38
- hooks:
39
- - id: isort
40
- name: Format imports
41
-
42
- - repo: https://github.com/psf/black
43
- rev: 22.12.0
44
- hooks:
45
- - id: black
46
- name: Format code
47
- additional_dependencies: ['click==8.0.2']
48
-
49
- - repo: https://github.com/charliermarsh/ruff-pre-commit
50
- # Ruff version.
51
- rev: 'v0.0.267'
52
- hooks:
53
- - id: ruff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Makefile DELETED
@@ -1,13 +0,0 @@
1
- .PHONY: style format
2
-
3
-
4
- style:
5
- python -m black --line-length 119 .
6
- python -m isort .
7
- ruff check --fix .
8
-
9
-
10
- quality:
11
- python -m black --check --line-length 119 .
12
- python -m isort --check-only .
13
- ruff check .
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -7,6 +7,8 @@ sdk: gradio
7
  app_file: app.py
8
  pinned: true
9
  license: apache-2.0
 
 
10
  ---
11
 
12
  # Start the configuration
 
7
  app_file: app.py
8
  pinned: true
9
  license: apache-2.0
10
+ sdk_version: 4.36.1
11
+ short_description: 'A Benchmark for Metamorphic Evaluation of T2V Generation'
12
  ---
13
 
14
  # Start the configuration
app.py CHANGED
@@ -1,345 +1,338 @@
1
- import subprocess
 
2
  import gradio as gr
3
  import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
-
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- NUMERIC_INTERVALS,
22
- TYPES,
23
- AutoEvalColumn,
24
- ModelType,
25
- fields,
26
- WeightType,
27
- Precision
28
- )
29
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
30
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
- from src.submission.submit import add_new_eval
32
-
33
-
34
- def restart_space():
35
- API.restart_space(repo_id=REPO_ID)
36
-
37
- try:
38
- print(EVAL_REQUESTS_PATH)
39
- snapshot_download(
40
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
41
- )
42
- except Exception:
43
- restart_space()
44
- try:
45
- print(EVAL_RESULTS_PATH)
46
- snapshot_download(
47
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
48
- )
49
- except Exception:
50
- restart_space()
51
-
52
-
53
- raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
54
- leaderboard_df = original_df.copy()
55
-
56
- (
57
- finished_eval_queue_df,
58
- running_eval_queue_df,
59
- pending_eval_queue_df,
60
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
61
-
62
-
63
- # Searching and filtering
64
- def update_table(
65
- hidden_df: pd.DataFrame,
66
- columns: list,
67
- type_query: list,
68
- precision_query: str,
69
- size_query: list,
70
- show_deleted: bool,
71
- query: str,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  ):
73
- filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
74
- filtered_df = filter_queries(query, filtered_df)
75
- df = select_columns(filtered_df, columns)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  return df
77
 
 
 
 
 
 
 
78
 
79
- def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
80
- return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
81
-
82
-
83
- def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
84
- always_here_cols = [
85
- AutoEvalColumn.model_type_symbol.name,
86
- AutoEvalColumn.model.name,
87
- ]
88
- # We use COLS to maintain sorting
89
- filtered_df = df[
90
- always_here_cols + [c for c in COLS if c in df.columns and c in columns]
91
- ]
92
- return filtered_df
93
-
94
-
95
- def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
96
- final_df = []
97
- if query != "":
98
- queries = [q.strip() for q in query.split(";")]
99
- for _q in queries:
100
- _q = _q.strip()
101
- if _q != "":
102
- temp_filtered_df = search_table(filtered_df, _q)
103
- if len(temp_filtered_df) > 0:
104
- final_df.append(temp_filtered_df)
105
- if len(final_df) > 0:
106
- filtered_df = pd.concat(final_df)
107
- filtered_df = filtered_df.drop_duplicates(
108
- subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
109
- )
110
-
111
- return filtered_df
112
-
113
-
114
- def filter_models(
115
- df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
116
- ) -> pd.DataFrame:
117
- # Show all models
118
- if show_deleted:
119
- filtered_df = df
120
- else: # Show only still on the hub models
121
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
122
-
123
- type_emoji = [t[0] for t in type_query]
124
- filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
125
- filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
126
-
127
- numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
128
- params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
129
- mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
130
- filtered_df = filtered_df.loc[mask]
131
 
132
- return filtered_df
 
 
 
133
 
 
134
 
135
- demo = gr.Blocks(css=custom_css)
136
- with demo:
137
- gr.HTML(TITLE)
138
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
139
 
 
 
 
 
140
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
141
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
 
142
  with gr.Row():
143
- with gr.Column():
144
- with gr.Row():
145
- search_bar = gr.Textbox(
146
- placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
147
- show_label=False,
148
- elem_id="search-bar",
149
- )
150
- with gr.Row():
151
- shown_columns = gr.CheckboxGroup(
152
- choices=[
153
- c.name
154
- for c in fields(AutoEvalColumn)
155
- if not c.hidden and not c.never_hidden
156
- ],
157
- value=[
158
- c.name
159
- for c in fields(AutoEvalColumn)
160
- if c.displayed_by_default and not c.hidden and not c.never_hidden
161
- ],
162
- label="Select columns to show",
163
- elem_id="column-select",
164
- interactive=True,
165
- )
166
- with gr.Row():
167
- deleted_models_visibility = gr.Checkbox(
168
- value=False, label="Show gated/private/deleted models", interactive=True
169
- )
170
- with gr.Column(min_width=320):
171
- #with gr.Box(elem_id="box-filter"):
172
- filter_columns_type = gr.CheckboxGroup(
173
- label="Model types",
174
- choices=[t.to_str() for t in ModelType],
175
- value=[t.to_str() for t in ModelType],
176
- interactive=True,
177
- elem_id="filter-columns-type",
178
- )
179
- filter_columns_precision = gr.CheckboxGroup(
180
- label="Precision",
181
- choices=[i.value.name for i in Precision],
182
- value=[i.value.name for i in Precision],
183
- interactive=True,
184
- elem_id="filter-columns-precision",
185
- )
186
- filter_columns_size = gr.CheckboxGroup(
187
- label="Model sizes (in billions of parameters)",
188
- choices=list(NUMERIC_INTERVALS.keys()),
189
- value=list(NUMERIC_INTERVALS.keys()),
190
- interactive=True,
191
- elem_id="filter-columns-size",
192
  )
 
 
 
 
 
 
 
 
 
 
 
193
 
194
- leaderboard_table = gr.components.Dataframe(
195
- value=leaderboard_df[
196
- [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
197
- + shown_columns.value
198
- ],
199
- headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
200
- datatype=TYPES,
201
- elem_id="leaderboard-table",
202
  interactive=False,
203
  visible=True,
204
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205
 
206
- # Dummy leaderboard for handling the case when the user uses backspace key
207
- hidden_leaderboard_table_for_search = gr.components.Dataframe(
208
- value=original_df[COLS],
209
- headers=COLS,
210
- datatype=TYPES,
211
- visible=False,
 
 
 
 
 
 
 
212
  )
213
- search_bar.submit(
214
- update_table,
215
- [
216
- hidden_leaderboard_table_for_search,
217
- shown_columns,
218
- filter_columns_type,
219
- filter_columns_precision,
220
- filter_columns_size,
221
- deleted_models_visibility,
222
- search_bar,
223
- ],
224
- leaderboard_table,
225
  )
226
- for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
227
- selector.change(
228
- update_table,
229
- [
230
- hidden_leaderboard_table_for_search,
231
- shown_columns,
232
- filter_columns_type,
233
- filter_columns_precision,
234
- filter_columns_size,
235
- deleted_models_visibility,
236
- search_bar,
237
- ],
238
- leaderboard_table,
239
- queue=True,
240
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
 
242
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
243
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
244
 
245
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
246
- with gr.Column():
247
- with gr.Row():
248
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
249
 
250
- with gr.Column():
251
- with gr.Accordion(
252
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
253
- open=False,
254
- ):
255
- with gr.Row():
256
- finished_eval_table = gr.components.Dataframe(
257
- value=finished_eval_queue_df,
258
- headers=EVAL_COLS,
259
- datatype=EVAL_TYPES,
260
- row_count=5,
261
- )
262
- with gr.Accordion(
263
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
264
- open=False,
265
- ):
266
- with gr.Row():
267
- running_eval_table = gr.components.Dataframe(
268
- value=running_eval_queue_df,
269
- headers=EVAL_COLS,
270
- datatype=EVAL_TYPES,
271
- row_count=5,
272
- )
273
-
274
- with gr.Accordion(
275
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
276
- open=False,
277
- ):
278
- with gr.Row():
279
- pending_eval_table = gr.components.Dataframe(
280
- value=pending_eval_queue_df,
281
- headers=EVAL_COLS,
282
- datatype=EVAL_TYPES,
283
- row_count=5,
284
- )
285
  with gr.Row():
286
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
287
 
288
  with gr.Row():
289
  with gr.Column():
290
- model_name_textbox = gr.Textbox(label="Model name")
291
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
292
- model_type = gr.Dropdown(
293
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
294
- label="Model type",
295
- multiselect=False,
296
- value=None,
297
- interactive=True,
298
  )
299
-
300
- with gr.Column():
301
- precision = gr.Dropdown(
302
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
303
- label="Precision",
304
- multiselect=False,
305
- value="float16",
306
- interactive=True,
307
  )
308
- weight_type = gr.Dropdown(
309
- choices=[i.value.name for i in WeightType],
310
- label="Weights type",
311
- multiselect=False,
312
- value="Original",
313
- interactive=True,
314
  )
315
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
316
-
317
- submit_button = gr.Button("Submit Eval")
318
- submission_result = gr.Markdown()
319
- submit_button.click(
320
- add_new_eval,
321
- [
322
- model_name_textbox,
323
- base_model_name_textbox,
324
- revision_name_textbox,
325
- precision,
326
- weight_type,
327
- model_type,
328
- ],
329
- submission_result,
330
- )
331
 
332
- with gr.Row():
333
- with gr.Accordion("📙 Citation", open=False):
334
- citation_button = gr.Textbox(
335
- value=CITATION_BUTTON_TEXT,
336
- label=CITATION_BUTTON_LABEL,
337
- lines=20,
338
- elem_id="citation-button",
339
- show_copy_button=True,
340
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341
 
342
- scheduler = BackgroundScheduler()
343
- scheduler.add_job(restart_space, "interval", seconds=1800)
344
- scheduler.start()
345
- demo.queue(default_concurrency_limit=40).launch()
 
 
 
 
 
 
 
1
+ __all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
2
+
3
  import gradio as gr
4
  import pandas as pd
5
+ import json
6
+ import io
7
+
8
+ from constants import *
9
+
10
+ global data_component, data_component_150, filter_component
11
+
12
+ def upload_file(files):
13
+ file_paths = [file.name for file in files]
14
+ return file_paths
15
+
16
+ def compute_scores(input_data):
17
+ return [None, [
18
+ input_data["Average_MTScore"],
19
+ input_data["Average_CHScore"],
20
+ input_data["Average_GPT4o-MTScore"],
21
+ input_data["Average_UMT-FVD"],
22
+ input_data["Average_UMTScore"]
23
+ ]]
24
+
25
+ def add_new_eval(
26
+ input_file,
27
+ model_name_textbox: str,
28
+ revision_name_textbox: str,
29
+ backbone_type_dropdown: str,
30
+ model_link: str,
31
+ ):
32
+ if input_file is None:
33
+ return "Error! Empty file!"
34
+ else:
35
+ input_json = json.load(io.BytesIO(input_file))
36
+
37
+ if model_name_textbox not in input_json:
38
+ return f"Error! Model '{model_name_textbox}' not found in input file!"
39
+
40
+ selected_model_data = input_json[model_name_textbox]
41
+
42
+ scores = compute_scores(selected_model_data)
43
+ input_data = scores[1]
44
+ input_data = [float(i) for i in input_data]
45
+
46
+ csv_data = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH)
47
+
48
+ if revision_name_textbox == '':
49
+ col = csv_data.shape[0]
50
+ model_name = model_name_textbox
51
+ name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in csv_data['Model']]
52
+ assert model_name not in name_list
53
+ else:
54
+ model_name = revision_name_textbox
55
+ model_name_list = csv_data['Model']
56
+ name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in model_name_list]
57
+ if revision_name_textbox not in name_list:
58
+ col = csv_data.shape[0]
59
+ else:
60
+ col = name_list.index(revision_name_textbox)
61
+
62
+ if model_link == '':
63
+ model_name = model_name # no url
64
+ else:
65
+ model_name = '[' + model_name + '](' + model_link + ')'
66
+
67
+ backbone = backbone_type_dropdown
68
+
69
+ new_data = [
70
+ model_name,
71
+ backbone,
72
+ input_data[3],
73
+ input_data[4],
74
+ input_data[0],
75
+ input_data[1],
76
+ input_data[2],
77
+ ]
78
+ csv_data.loc[col] = new_data
79
+ csv_data.to_csv(CSV_DIR_CHRONOMAGIC_BENCH, index=False)
80
+ return "Evaluation successfully submitted!"
81
+
82
+ def add_new_eval_150(
83
+ input_file,
84
+ model_name_textbox: str,
85
+ revision_name_textbox: str,
86
+ backbone_type_dropdown: str,
87
+ model_link: str,
88
  ):
89
+ if input_file is None:
90
+ return "Error! Empty file!"
91
+ else:
92
+ input_json = json.load(io.BytesIO(input_file))
93
+
94
+ if model_name_textbox not in input_json:
95
+ return f"Error! Model '{model_name_textbox}' not found in input file!"
96
+
97
+ selected_model_data = input_json[model_name_textbox]
98
+
99
+ scores = compute_scores(selected_model_data)
100
+ input_data = scores[1]
101
+ input_data = [float(i) for i in input_data]
102
+
103
+ csv_data = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH_150)
104
+
105
+ if revision_name_textbox == '':
106
+ col = csv_data.shape[0]
107
+ model_name = model_name_textbox
108
+ name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in csv_data['Model']]
109
+ assert model_name not in name_list
110
+ else:
111
+ model_name = revision_name_textbox
112
+ model_name_list = csv_data['Model']
113
+ name_list = [name.split(']')[0][1:] if name.endswith(')') else name for name in model_name_list]
114
+ if revision_name_textbox not in name_list:
115
+ col = csv_data.shape[0]
116
+ else:
117
+ col = name_list.index(revision_name_textbox)
118
+
119
+ if model_link == '':
120
+ model_name = model_name # no url
121
+ else:
122
+ model_name = '[' + model_name + '](' + model_link + ')'
123
+
124
+ backbone = backbone_type_dropdown
125
+
126
+ new_data = [
127
+ model_name,
128
+ backbone,
129
+ input_data[3],
130
+ input_data[4],
131
+ input_data[0],
132
+ input_data[1],
133
+ input_data[2],
134
+ ]
135
+ csv_data.loc[col] = new_data
136
+ csv_data.to_csv(CSV_DIR_CHRONOMAGIC_BENCH_150, index=False)
137
+ return "Evaluation (150) successfully submitted!"
138
+
139
+ def get_baseline_df():
140
+ df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH)
141
+ df = df.sort_values(by="MTScore↑", ascending=False)
142
+ present_columns = MODEL_INFO + checkbox_group.value
143
+ df = df[present_columns]
144
  return df
145
 
146
+ def get_baseline_df_150():
147
+ df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH_150)
148
+ df = df.sort_values(by="MTScore↑", ascending=False)
149
+ present_columns = MODEL_INFO + checkbox_group_150.value
150
+ df = df[present_columns]
151
+ return df
152
 
153
+ def get_all_df():
154
+ df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH)
155
+ df = df.sort_values(by="MTScore↑", ascending=False)
156
+ return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
158
+ def get_all_df_150():
159
+ df = pd.read_csv(CSV_DIR_CHRONOMAGIC_BENCH_150)
160
+ df = df.sort_values(by="MTScore↑", ascending=False)
161
+ return df
162
 
163
+ block = gr.Blocks()
164
 
 
 
 
 
165
 
166
+ with block:
167
+ gr.Markdown(
168
+ LEADERBORAD_INTRODUCTION
169
+ )
170
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
171
+ # table 1
172
+ with gr.TabItem("🏅 ChronoMagic-Bench", elem_id="ChronoMagic-Bench-tab-table", id=0):
173
  with gr.Row():
174
+ with gr.Accordion("Citation", open=False):
175
+ citation_button = gr.Textbox(
176
+ value=CITATION_BUTTON_TEXT,
177
+ label=CITATION_BUTTON_LABEL,
178
+ elem_id="citation-button",
179
+ show_copy_button=True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
  )
181
+
182
+ gr.Markdown(
183
+ TABLE_INTRODUCTION
184
+ )
185
+
186
+ checkbox_group = gr.CheckboxGroup(
187
+ choices=ALL_RESULTS,
188
+ value=SELECTED_RESULTS,
189
+ label="Select options",
190
+ interactive=True,
191
+ )
192
 
193
+ data_component = gr.components.Dataframe(
194
+ value=get_baseline_df,
195
+ headers=COLUMN_NAMES,
196
+ type="pandas",
197
+ datatype=DATA_TITILE_TYPE,
 
 
 
198
  interactive=False,
199
  visible=True,
200
+ )
201
+
202
+ def on_checkbox_group_change(selected_columns):
203
+ selected_columns = [item for item in ALL_RESULTS if item in selected_columns]
204
+ present_columns = MODEL_INFO + selected_columns
205
+ updated_data = get_all_df()[present_columns]
206
+ updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
207
+ updated_headers = present_columns
208
+ update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
209
+
210
+ filter_component = gr.components.Dataframe(
211
+ value=updated_data,
212
+ headers=updated_headers,
213
+ type="pandas",
214
+ datatype=update_datatype,
215
+ interactive=False,
216
+ visible=True,
217
+ )
218
+
219
+ return filter_component
220
+
221
+ checkbox_group.change(fn=on_checkbox_group_change, inputs=checkbox_group, outputs=data_component)
222
 
223
+ # table 2
224
+ with gr.TabItem("🏅 ChronoMagic-Bench-150", elem_id="ChronoMagic-Bench-150-tab-table", id=1):
225
+ with gr.Row():
226
+ with gr.Accordion("Citation", open=False):
227
+ citation_button = gr.Textbox(
228
+ value=CITATION_BUTTON_TEXT,
229
+ label=CITATION_BUTTON_LABEL,
230
+ elem_id="citation-button",
231
+ show_copy_button=True
232
+ )
233
+
234
+ gr.Markdown(
235
+ TABLE_INTRODUCTION
236
  )
237
+
238
+ checkbox_group_150 = gr.CheckboxGroup(
239
+ choices=ALL_RESULTS,
240
+ value=SELECTED_RESULTS_150,
241
+ label="Select options",
242
+ interactive=True,
 
 
 
 
 
 
243
  )
244
+
245
+ data_component_150 = gr.components.Dataframe(
246
+ value=get_baseline_df_150,
247
+ headers=COLUMN_NAMES,
248
+ type="pandas",
249
+ datatype=DATA_TITILE_TYPE,
250
+ interactive=False,
251
+ visible=True,
 
 
 
 
 
 
252
  )
253
+
254
+ def on_checkbox_group_150_change(selected_columns):
255
+ selected_columns = [item for item in ALL_RESULTS if item in selected_columns]
256
+ present_columns = MODEL_INFO + selected_columns
257
+ updated_data = get_all_df_150()[present_columns]
258
+ updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
259
+ updated_headers = present_columns
260
+ update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
261
+
262
+ filter_component = gr.components.Dataframe(
263
+ value=updated_data,
264
+ headers=updated_headers,
265
+ type="pandas",
266
+ datatype=update_datatype,
267
+ interactive=False,
268
+ visible=True,
269
+ )
270
+
271
+ return filter_component
272
 
273
+ checkbox_group_150.change(fn=on_checkbox_group_150_change, inputs=checkbox_group_150, outputs=data_component_150)
 
274
 
275
+ # table 3
276
+ with gr.TabItem("🚀 Submit here! ", elem_id="seed-benchmark-tab-table", id=2):
277
+ with gr.Row():
278
+ gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
  with gr.Row():
281
+ gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
282
 
283
  with gr.Row():
284
  with gr.Column():
285
+ model_name_textbox = gr.Textbox(
286
+ label="Model name", placeholder="MagicTime"
287
+ )
288
+ revision_name_textbox = gr.Textbox(
289
+ label="Revision Model Name", placeholder="MagicTime"
 
 
 
290
  )
291
+ backbone_type_dropdown = gr.Dropdown(
292
+ label="Backbone Type",
293
+ choices=["DiT", "U-Net"],
294
+ value="DiT"
 
 
 
 
295
  )
296
+ model_link = gr.Textbox(
297
+ label="Model Link", placeholder="https://github.com/PKU-YuanGroup/MagicTime"
 
 
 
 
298
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299
 
300
+ with gr.Column():
301
+ input_file = gr.File(label="Click to Upload a json File", type='binary')
302
+ submit_button = gr.Button("Submit Eval (ChronoMagic-Bench)")
303
+ submit_button_150 = gr.Button("Submit Eval (ChronoMagic-Bench-150)")
304
+
305
+ submission_result = gr.Markdown()
306
+ submit_button.click(
307
+ add_new_eval,
308
+ inputs=[
309
+ input_file,
310
+ model_name_textbox,
311
+ revision_name_textbox,
312
+ backbone_type_dropdown,
313
+ model_link,
314
+ ],
315
+ outputs=submission_result,
316
+ )
317
+ submit_button_150.click(
318
+ add_new_eval_150,
319
+ inputs=[
320
+ input_file,
321
+ model_name_textbox,
322
+ revision_name_textbox,
323
+ backbone_type_dropdown,
324
+ model_link,
325
+ ],
326
+ outputs = submission_result,
327
+ )
328
 
329
+ with gr.Row():
330
+ data_run = gr.Button("Refresh")
331
+ data_run.click(
332
+ get_baseline_df, outputs=data_component
333
+ )
334
+ data_run.click(
335
+ get_baseline_df_150, outputs=data_component_150
336
+ )
337
+
338
+ block.launch()
constants.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MODEL_INFO = ["Model", "Backbone"]
2
+
3
+ ALL_RESULTS = ["UMT-FVD↓", "UMTScore↑", "MTScore↑", "CHScore↑", "GPT4o-MTScore↑"]
4
+
5
+ SELECTED_RESULTS = ["UMT-FVD↓", "UMTScore↑", "MTScore↑", "CHScore↑", "GPT4o-MTScore↑"]
6
+ SELECTED_RESULTS_150 = ["UMT-FVD↓", "UMTScore↑", "MTScore↑", "GPT4o-MTScore↑"]
7
+
8
+ DATA_TITILE_TYPE = ["markdown", 'markdown', "number", "number", "number", "number", "number"]
9
+
10
+ CSV_DIR_CHRONOMAGIC_BENCH = "./file/results_ChronoMagic-Bench.csv"
11
+ CSV_DIR_CHRONOMAGIC_BENCH_150 = "./file/results_ChronoMagic-Bench-150.csv"
12
+
13
+ COLUMN_NAMES = MODEL_INFO + ALL_RESULTS
14
+
15
+ LEADERBORAD_INTRODUCTION = """# ChronoMagic-Bench Leaderboard
16
+
17
+ Welcome to the leaderboard of the ChronoMagic-Bench!
18
+
19
+ 🏆ChronoMagic-Bench represents the inaugural benchmark dedicated to assessing T2V models' capabilities in generating time-lapse videos that demonstrate significant metamorphic amplitude and temporal coherence. The benchmark probes T2V models for their physics, biology, and chemistry capabilities, in a free-form text control.
20
+
21
+ Please refer to [our paper](https://arxiv.org/abs/2311.16103) for more details.
22
+ """
23
+
24
+ SUBMIT_INTRODUCTION = """# Submit Introduction
25
+ Obtain `ChronoMagic-Bench-Input.json` from our [github repository](https://github.com/PKU-YuanGroup/Video-Bench#%EF%B8%8F-evaluate-your-own-model) after evaluation.
26
+
27
+
28
+ ## Submit Example
29
+ For example, if you want to upload Video-ChatGPT's result in the leaderboard, you need to:
30
+ 1. Fill in 'MagicTime' in 'Model Name' if it is your first time to submit your result (You can leave 'Revision Model Name' blank).
31
+ 2. Fill in 'MagicTime' in 'Revision Model Name' if you want to update your result (You can leave 'Model Name' blank).
32
+ 3. Select ‘Backbone Type’ (DiT or U-Net).
33
+ 4. Fill in 'https://github.com/x/x' in 'Model Link'.
34
+ 5. Upload `ChronoMagic-Bench-Input.json`.
35
+ 6. Click the 'Submit Eval' button.
36
+ 7. Click 'Refresh' to obtain the uploaded leaderboard.
37
+ """
38
+
39
+ TABLE_INTRODUCTION = """In the table below, we summarize each task performance of all the models.
40
+ We use UMT-FVD, UMTScore, MTScore, CHScore, GPT4o-MTScore as the primary evaluation metric for each tasks.
41
+ """
42
+
43
+ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
44
+ CITATION_BUTTON_TEXT = r"""@article{yuan2024magictime,
45
+ title={MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators},
46
+ author={Yuan, Shenghai and Huang, Jinfa and Shi, Yujun and Xu, Yongqi and Zhu, Ruijie and Lin, Bin and Cheng, Xinhua and Yuan, Li and Luo, Jiebo},
47
+ journal={arXiv preprint arXiv:2404.05014},
48
+ year={2024}
49
+ }"""
file/ChronoMagic-Bench-Input.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "test": {
3
+ "Average_MTScore": 0.2613712220142285,
4
+ "Average_CHScore": 4.1676077942528345,
5
+ "Average_GPT4o-MTScore": 2.3333333333333335,
6
+ "Average_UMT-FVD": -1,
7
+ "Average_UMTScore": -1
8
+ }
9
+ }
file/results_ChronoMagic-Bench-150.csv ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,Backbone,UMT-FVD↓,UMTScore↑,MTScore↑,CHScore↑,GPT4o-MTScore↑
2
+ [Gen-2 (20240610)](https://research.runwayml.com/gen2),DiT,218.99,2.4,0.373,5.27,2.62
3
+ [Pika-2.0 (20240610)](https://www.pika.art/),DiT,223.05,2.317,0.347,4.0,2.48
4
+ [Dream Machine (20240610)](https://lumalabs.ai/dream-machine),DiT,214.91,2.387,0.474,2.3,3.11
5
+ [KeLing (20240610)](https://h5.kwaiying.com/officialWebsite),DiT,202.32,2.517,0.369,3.69,2.74
6
+ [ModelScopeT2V](https://huggingface.co/ali-vilab/text-to-video-ms-1.7b),U-Net,230.74,2.783,0.409,10.64,3.01
7
+ [ZeroScope](https://huggingface.co/cerspense/zeroscope_v2_576w),U-Net,260.61,2.232,0.403,24.1,2.29
8
+ [T2V-Zero](https://github.com/Picsart-AI-Research/Text2Video-Zero),U-Net,250.22,2.559,0.399,1.84,2.62
9
+ [LaVie](https://github.com/Vchitect/LaVie),U-Net,210.39,2.714,0.35,9.58,2.5
10
+ [AnimateDiff-V3](https://github.com/guoyww/AnimateDiff),U-Net,239.31,2.837,0.47,11.09,2.62
11
+ [VideoCrafter2](https://github.com/AILab-CVC/VideoCrafter),U-Net,214.06,2.763,0.437,7.78,2.87
12
+ [MagicTime](https://github.com/PKU-YuanGroup/MagicTime),U-Net,294.72,1.763,0.479,11.58,3.05
13
+ [Latte](https://github.com/Vchitect/Latte),DiT,232.29,2.122,0.366,13.79,2.42
14
+ [OpenSora 1.1](https://github.com/hpcaitech/Open-Sora),DiT,241.09,2.676,0.448,10.46,2.57
15
+ [OpenSora 1.2](https://github.com/hpcaitech/Open-Sora),DiT,210.93,2.681,0.383,5.6,2.5
16
+ [OpenSoraPlan v1.1](https://github.com/PKU-YuanGroup/Open-Sora-Plan),DiT,228.7,2.459,0.331,10.32,2.21
file/results_ChronoMagic-Bench.csv ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,Backbone,UMT-FVD↓,UMTScore↑,MTScore↑,CHScore↑,GPT4o-MTScore↑
2
+ [ModelScopeT2V](https://huggingface.co/ali-vilab/text-to-video-ms-1.7b),U-Net,194.77,2.909,0.401,11.03,2.86
3
+ [ZeroScope](https://huggingface.co/cerspense/zeroscope_v2_576w),U-Net,227.02,2.35,0.4,25.13,2.09
4
+ [T2V-Zero](https://github.com/Picsart-AI-Research/Text2Video-Zero),U-Net,209.66,2.661,0.4,1.68,2.55
5
+ [LaVie](https://github.com/Vchitect/LaVie),U-Net,166.97,2.763,0.346,8.6,2.46
6
+ [AnimateDiff-V3](https://github.com/guoyww/AnimateDiff),U-Net,197.89,2.944,0.467,11.36,2.62
7
+ [VideoCrafter2](https://github.com/AILab-CVC/VideoCrafter),U-Net,178.45,2.753,0.433,8.27,2.68
8
+ [MagicTime](https://github.com/PKU-YuanGroup/MagicTime),U-Net,257.56,1.916,0.478,10.66,3.13
9
+ [Latte](https://github.com/Vchitect/Latte),DiT,192.12,2.111,0.363,13.81,2.2
10
+ [OpenSora 1.1](https://github.com/hpcaitech/Open-Sora),DiT,195.43,2.678,0.444,10.03,2.52
11
+ [OpenSora 1.2](https://github.com/hpcaitech/Open-Sora),DiT,166.92,2.781,0.375,4.69,2.56
12
+ [OpenSoraPlan v1.1](https://github.com/PKU-YuanGroup/Open-Sora-Plan),DiT,188.53,2.421,0.327,10.35,2.19
pyproject.toml DELETED
@@ -1,13 +0,0 @@
1
- [tool.ruff]
2
- # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
- select = ["E", "F"]
4
- ignore = ["E501"] # line too long (black is taking care of this)
5
- line-length = 119
6
- fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
-
8
- [tool.isort]
9
- profile = "black"
10
- line_length = 119
11
-
12
- [tool.black]
13
- line-length = 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,18 +1,2 @@
1
- APScheduler
2
- black
3
- click
4
- datasets
5
- gradio
6
- gradio_client
7
- huggingface-hub>=0.18.0
8
- matplotlib
9
- numpy
10
- pandas
11
- python-dateutil
12
- requests
13
- tqdm
14
- transformers
15
- tokenizers>=0.15.0
16
- git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463#egg=lm-eval
17
- accelerate
18
- sentencepiece
 
1
+ gradio==4.36.1
2
+ pandas==2.2.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/about.py DELETED
@@ -1,72 +0,0 @@
1
- from dataclasses import dataclass
2
- from enum import Enum
3
-
4
- @dataclass
5
- class Task:
6
- benchmark: str
7
- metric: str
8
- col_name: str
9
-
10
-
11
- # Select your tasks here
12
- # ---------------------------------------------------
13
- class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
17
-
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
-
21
-
22
-
23
- # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
-
26
- # What does your leaderboard evaluate?
27
- INTRODUCTION_TEXT = """
28
- Intro text
29
- """
30
-
31
- # Which evaluations are you running? how can people reproduce what you have?
32
- LLM_BENCHMARKS_TEXT = f"""
33
- ## How it works
34
-
35
- ## Reproducibility
36
- To reproduce our results, here is the commands you can run:
37
-
38
- """
39
-
40
- EVALUATION_QUEUE_TEXT = """
41
- ## Some good practices before submitting a model
42
-
43
- ### 1) Make sure you can load your model and tokenizer using AutoClasses:
44
- ```python
45
- from transformers import AutoConfig, AutoModel, AutoTokenizer
46
- config = AutoConfig.from_pretrained("your model name", revision=revision)
47
- model = AutoModel.from_pretrained("your model name", revision=revision)
48
- tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
- ```
50
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
51
-
52
- Note: make sure your model is public!
53
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
54
-
55
- ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
57
-
58
- ### 3) Make sure your model has an open license!
59
- This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
60
-
61
- ### 4) Fill up your model card
62
- When we add extra information about models to the leaderboard, it will be automatically taken from the model card
63
-
64
- ## In case of model failure
65
- If your model is displayed in the `FAILED` category, its execution stopped.
66
- Make sure you have followed the above steps first.
67
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
68
- """
69
-
70
- CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
71
- CITATION_BUTTON_TEXT = r"""
72
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/css_html_js.py DELETED
@@ -1,105 +0,0 @@
1
- custom_css = """
2
-
3
- .markdown-text {
4
- font-size: 16px !important;
5
- }
6
-
7
- #models-to-add-text {
8
- font-size: 18px !important;
9
- }
10
-
11
- #citation-button span {
12
- font-size: 16px !important;
13
- }
14
-
15
- #citation-button textarea {
16
- font-size: 16px !important;
17
- }
18
-
19
- #citation-button > label > button {
20
- margin: 6px;
21
- transform: scale(1.3);
22
- }
23
-
24
- #leaderboard-table {
25
- margin-top: 15px
26
- }
27
-
28
- #leaderboard-table-lite {
29
- margin-top: 15px
30
- }
31
-
32
- #search-bar-table-box > div:first-child {
33
- background: none;
34
- border: none;
35
- }
36
-
37
- #search-bar {
38
- padding: 0px;
39
- }
40
-
41
- /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
- table td:first-child,
43
- table th:first-child {
44
- max-width: 400px;
45
- overflow: auto;
46
- white-space: nowrap;
47
- }
48
-
49
- .tab-buttons button {
50
- font-size: 20px;
51
- }
52
-
53
- #scale-logo {
54
- border-style: none !important;
55
- box-shadow: none;
56
- display: block;
57
- margin-left: auto;
58
- margin-right: auto;
59
- max-width: 600px;
60
- }
61
-
62
- #scale-logo .download {
63
- display: none;
64
- }
65
- #filter_type{
66
- border: 0;
67
- padding-left: 0;
68
- padding-top: 0;
69
- }
70
- #filter_type label {
71
- display: flex;
72
- }
73
- #filter_type label > span{
74
- margin-top: var(--spacing-lg);
75
- margin-right: 0.5em;
76
- }
77
- #filter_type label > .wrap{
78
- width: 103px;
79
- }
80
- #filter_type label > .wrap .wrap-inner{
81
- padding: 2px;
82
- }
83
- #filter_type label > .wrap .wrap-inner input{
84
- width: 1px
85
- }
86
- #filter-columns-type{
87
- border:0;
88
- padding:0.5;
89
- }
90
- #filter-columns-size{
91
- border:0;
92
- padding:0.5;
93
- }
94
- #box-filter > .form{
95
- border: 0
96
- }
97
- """
98
-
99
- get_window_url_params = """
100
- function(url_params) {
101
- const params = new URLSearchParams(window.location.search);
102
- url_params = Object.fromEntries(params);
103
- return url_params;
104
- }
105
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/formatting.py DELETED
@@ -1,27 +0,0 @@
1
- def model_hyperlink(link, model_name):
2
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
-
4
-
5
- def make_clickable_model(model_name):
6
- link = f"https://huggingface.co/{model_name}"
7
- return model_hyperlink(link, model_name)
8
-
9
-
10
- def styled_error(error):
11
- return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
-
13
-
14
- def styled_warning(warn):
15
- return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
-
17
-
18
- def styled_message(message):
19
- return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
-
21
-
22
- def has_no_nan_values(df, columns):
23
- return df[columns].notna().all(axis=1)
24
-
25
-
26
- def has_nan_values(df, columns):
27
- return df[columns].isna().any(axis=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/utils.py DELETED
@@ -1,135 +0,0 @@
1
- from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
-
4
- import pandas as pd
5
-
6
- from src.about import Tasks
7
-
8
- def fields(raw_class):
9
- return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
-
11
-
12
- # These classes are for user facing column names,
13
- # to avoid having to change them all around the code
14
- # when a modif is needed
15
- @dataclass
16
- class ColumnContent:
17
- name: str
18
- type: str
19
- displayed_by_default: bool
20
- hidden: bool = False
21
- never_hidden: bool = False
22
-
23
- ## Leaderboard columns
24
- auto_eval_column_dict = []
25
- # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
- for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
- # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
-
43
- # We use make dataclass to dynamically fill the scores from Tasks
44
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
-
46
- ## For the queue columns in the submission tab
47
- @dataclass(frozen=True)
48
- class EvalQueueColumn: # Queue column
49
- model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
- precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
- status = ColumnContent("status", "str", True)
55
-
56
- ## All the model information that we might need
57
- @dataclass
58
- class ModelDetails:
59
- name: str
60
- display_name: str = ""
61
- symbol: str = "" # emoji
62
-
63
-
64
- class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
- Unknown = ModelDetails(name="", symbol="?")
70
-
71
- def to_str(self, separator=" "):
72
- return f"{self.value.symbol}{separator}{self.value.name}"
73
-
74
- @staticmethod
75
- def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
- return ModelType.Unknown
85
-
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- float32 = ModelDetails("float32")
95
- #qt_8bit = ModelDetails("8bit")
96
- #qt_4bit = ModelDetails("4bit")
97
- #qt_GPTQ = ModelDetails("GPTQ")
98
- Unknown = ModelDetails("?")
99
-
100
- def from_str(precision):
101
- if precision in ["torch.float16", "float16"]:
102
- return Precision.float16
103
- if precision in ["torch.bfloat16", "bfloat16"]:
104
- return Precision.bfloat16
105
- if precision in ["float32"]:
106
- return Precision.float32
107
- #if precision in ["8bit"]:
108
- # return Precision.qt_8bit
109
- #if precision in ["4bit"]:
110
- # return Precision.qt_4bit
111
- #if precision in ["GPTQ", "None"]:
112
- # return Precision.qt_GPTQ
113
- return Precision.Unknown
114
-
115
- # Column selection
116
- COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
117
- TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
118
- COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
119
- TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
120
-
121
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
122
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
123
-
124
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
125
-
126
- NUMERIC_INTERVALS = {
127
- "?": pd.Interval(-1, 0, closed="right"),
128
- "~1.5": pd.Interval(0, 2, closed="right"),
129
- "~3": pd.Interval(2, 4, closed="right"),
130
- "~7": pd.Interval(4, 9, closed="right"),
131
- "~13": pd.Interval(9, 20, closed="right"),
132
- "~35": pd.Interval(20, 45, closed="right"),
133
- "~60": pd.Interval(45, 70, closed="right"),
134
- "70+": pd.Interval(70, 10000, closed="right"),
135
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/envs.py DELETED
@@ -1,25 +0,0 @@
1
- import os
2
-
3
- from huggingface_hub import HfApi
4
-
5
- # Info to change for your repository
6
- # ----------------------------------
7
- TOKEN = os.environ.get("TOKEN") # A read/write token for your org
8
-
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
- # ----------------------------------
11
-
12
- REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
-
16
- # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
-
19
- # Local caches
20
- EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
- EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
-
25
- API = HfApi(token=TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/read_evals.py DELETED
@@ -1,196 +0,0 @@
1
- import glob
2
- import json
3
- import math
4
- import os
5
- from dataclasses import dataclass
6
-
7
- import dateutil
8
- import numpy as np
9
-
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
-
14
-
15
- @dataclass
16
- class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
-
35
- @classmethod
36
- def init_from_json_file(self, json_filepath):
37
- """Inits the result from the specific model result file"""
38
- with open(json_filepath) as fp:
39
- data = json.load(fp)
40
-
41
- config = data.get("config")
42
-
43
- # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
-
156
-
157
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
- """From the path of the results folder root, extract all needed info for results"""
159
- model_result_filepaths = []
160
-
161
- for root, _, files in os.walk(results_path):
162
- # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
165
-
166
- # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
-
172
- for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
174
-
175
- eval_results = {}
176
- for model_result_filepath in model_result_filepaths:
177
- # Creation of result
178
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
- # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
187
-
188
- results = []
189
- for v in eval_results.values():
190
- try:
191
- v.to_dict() # we test if the dict version is complete
192
- results.append(v)
193
- except KeyError: # not all eval values present
194
- continue
195
-
196
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/populate.py DELETED
@@ -1,58 +0,0 @@
1
- import json
2
- import os
3
-
4
- import pandas as pd
5
-
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
-
10
-
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
- """Creates a dataframe from all the individual experiment results"""
13
- raw_data = get_raw_eval_results(results_path, requests_path)
14
- all_data_json = [v.to_dict() for v in raw_data]
15
-
16
- df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
- df = df[cols].round(decimals=2)
19
-
20
- # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
- return raw_data, df
23
-
24
-
25
- def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
- """Creates the different dataframes for the evaluation queues requestes"""
27
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
- all_evals = []
29
-
30
- for entry in entries:
31
- if ".json" in entry:
32
- file_path = os.path.join(save_path, entry)
33
- with open(file_path) as fp:
34
- data = json.load(fp)
35
-
36
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
37
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
38
-
39
- all_evals.append(data)
40
- elif ".md" not in entry:
41
- # this is a folder
42
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
43
- for sub_entry in sub_entries:
44
- file_path = os.path.join(save_path, entry, sub_entry)
45
- with open(file_path) as fp:
46
- data = json.load(fp)
47
-
48
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
49
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
50
- all_evals.append(data)
51
-
52
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
- return df_finished[cols], df_running[cols], df_pending[cols]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )