BestWishYsh's picture
Upload 57 files
c32f190 verified
raw
history blame
2.89 kB
import torch
import torch.nn as nn
import numpy as np
from torch.optim import AdamW
import torch.optim as optim
import itertools
from .warplayer import warp
from torch.nn.parallel import DistributedDataParallel as DDP
from .IFNet_HDv3 import *
import torch.nn.functional as F
from .loss import *
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Model:
def __init__(self, local_rank=-1):
self.flownet = IFNet()
self.device()
self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-4)
self.epe = EPE()
# self.vgg = VGGPerceptualLoss().to(device)
self.sobel = SOBEL()
if local_rank != -1:
self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank)
def train(self):
self.flownet.train()
def eval(self):
self.flownet.eval()
def device(self):
self.flownet.to(device)
def load_model(self, path, rank=0):
def convert(param):
if rank == -1:
return {k.replace("module.", ""): v for k, v in param.items() if "module." in k}
else:
return param
if rank <= 0:
if torch.cuda.is_available():
self.flownet.load_state_dict(convert(torch.load("{}/flownet.pkl".format(path))))
else:
self.flownet.load_state_dict(convert(torch.load("{}/flownet.pkl".format(path), map_location="cpu")))
def save_model(self, path, rank=0):
if rank == 0:
torch.save(self.flownet.state_dict(), "{}/flownet.pkl".format(path))
def inference(self, img0, img1, scale=1.0):
imgs = torch.cat((img0, img1), 1)
scale_list = [4 / scale, 2 / scale, 1 / scale]
flow, mask, merged = self.flownet(imgs, scale_list)
return merged[2]
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
for param_group in self.optimG.param_groups:
param_group["lr"] = learning_rate
img0 = imgs[:, :3]
img1 = imgs[:, 3:]
if training:
self.train()
else:
self.eval()
scale = [4, 2, 1]
flow, mask, merged = self.flownet(torch.cat((imgs, gt), 1), scale=scale, training=training)
loss_l1 = (merged[2] - gt).abs().mean()
loss_smooth = self.sobel(flow[2], flow[2] * 0).mean()
# loss_vgg = self.vgg(merged[2], gt)
if training:
self.optimG.zero_grad()
loss_G = loss_cons + loss_smooth * 0.1
loss_G.backward()
self.optimG.step()
else:
flow_teacher = flow[2]
return merged[2], {
"mask": mask,
"flow": flow[2][:, :2],
"loss_l1": loss_l1,
"loss_cons": loss_cons,
"loss_smooth": loss_smooth,
}