|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import math |
|
from typing import Callable, Any, Dict, List, Optional, Tuple, Union |
|
|
|
import cv2 |
|
import numpy as np |
|
import PIL |
|
import torch |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
from diffusers.image_processor import PipelineImageInput |
|
from diffusers.loaders import CogVideoXLoraLoaderMixin |
|
from diffusers.models import AutoencoderKLCogVideoX, ConsisIDTransformer3DModel |
|
from diffusers.models.embeddings import get_3d_rotary_pos_embed |
|
from diffusers.pipelines.consisid.pipeline_output import ConsisIDPipelineOutput |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.schedulers import CogVideoXDPMScheduler |
|
from diffusers.utils import logging, replace_example_docstring |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.video_processor import VideoProcessor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import ConsisIDPipeline |
|
>>> from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer |
|
>>> from diffusers.utils import export_to_video |
|
>>> from huggingface_hub import snapshot_download |
|
|
|
>>> snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") |
|
|
|
>>> face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = ( |
|
... prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) |
|
... ) |
|
>>> pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) |
|
>>> pipe.to("cuda") |
|
|
|
>>> prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." |
|
>>> image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" |
|
|
|
>>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( |
|
... face_helper_1, |
|
... face_clip_model, |
|
... face_helper_2, |
|
... eva_transform_mean, |
|
... eva_transform_std, |
|
... face_main_model, |
|
... "cuda", |
|
... torch.bfloat16, |
|
... image, |
|
... is_align_face=True, |
|
... ) |
|
|
|
>>> video = pipe( |
|
... image=image, |
|
... prompt=prompt, |
|
... num_inference_steps=50, |
|
... guidance_scale=6.0, |
|
... use_dynamic_cfg=False, |
|
... id_vit_hidden=id_vit_hidden, |
|
... id_cond=id_cond, |
|
... kps_cond=face_kps, |
|
... generator=torch.Generator("cuda").manual_seed(42), |
|
... ) |
|
>>> export_to_video(video.frames[0], "output.mp4", fps=8) |
|
``` |
|
""" |
|
|
|
|
|
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]): |
|
""" |
|
This function draws keypoints and the limbs connecting them on an image. |
|
|
|
Parameters: |
|
- image_pil (PIL.Image): Input image as a PIL object. |
|
- kps (list of tuples): A list of keypoints where each keypoint is a tuple of (x, y) coordinates. |
|
- color_list (list of tuples, optional): List of colors (in RGB format) for each keypoint. Default is a set of five |
|
colors. |
|
|
|
Returns: |
|
- PIL.Image: Image with the keypoints and limbs drawn. |
|
""" |
|
|
|
stickwidth = 4 |
|
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) |
|
kps = np.array(kps) |
|
|
|
w, h = image_pil.size |
|
out_img = np.zeros([h, w, 3]) |
|
|
|
for i in range(len(limbSeq)): |
|
index = limbSeq[i] |
|
color = color_list[index[0]] |
|
|
|
x = kps[index][:, 0] |
|
y = kps[index][:, 1] |
|
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 |
|
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) |
|
polygon = cv2.ellipse2Poly( |
|
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1 |
|
) |
|
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) |
|
out_img = (out_img * 0.6).astype(np.uint8) |
|
|
|
for idx_kp, kp in enumerate(kps): |
|
color = color_list[idx_kp] |
|
x, y = kp |
|
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) |
|
|
|
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8)) |
|
return out_img_pil |
|
|
|
|
|
|
|
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): |
|
""" |
|
This function calculates the resize and crop region for an image to fit a target width and height while preserving |
|
the aspect ratio. |
|
|
|
Parameters: |
|
- src (tuple): A tuple containing the source image's height (h) and width (w). |
|
- tgt_width (int): The target width to resize the image. |
|
- tgt_height (int): The target height to resize the image. |
|
|
|
Returns: |
|
- tuple: Two tuples representing the crop region: |
|
1. The top-left coordinates of the crop region. |
|
2. The bottom-right coordinates of the crop region. |
|
""" |
|
|
|
tw = tgt_width |
|
th = tgt_height |
|
h, w = src |
|
r = h / w |
|
if r > (th / tw): |
|
resize_height = th |
|
resize_width = int(round(th / h * w)) |
|
else: |
|
resize_width = tw |
|
resize_height = int(round(tw / w * h)) |
|
|
|
crop_top = int(round((th - resize_height) / 2.0)) |
|
crop_left = int(round((tw - resize_width) / 2.0)) |
|
|
|
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
class ConsisIDPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin): |
|
r""" |
|
Pipeline for image-to-video generation using ConsisID. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. |
|
text_encoder ([`T5EncoderModel`]): |
|
Frozen text-encoder. ConsisID uses |
|
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the |
|
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. |
|
tokenizer (`T5Tokenizer`): |
|
Tokenizer of class |
|
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). |
|
transformer ([`ConsisIDTransformer3DModel`]): |
|
A text conditioned `ConsisIDTransformer3DModel` to denoise the encoded video latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded video latents. |
|
""" |
|
|
|
_optional_components = [] |
|
model_cpu_offload_seq = "text_encoder->transformer->vae" |
|
|
|
_callback_tensor_inputs = [ |
|
"latents", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
] |
|
|
|
def __init__( |
|
self, |
|
tokenizer: T5Tokenizer, |
|
text_encoder: T5EncoderModel, |
|
vae: AutoencoderKLCogVideoX, |
|
transformer: ConsisIDTransformer3DModel, |
|
scheduler: CogVideoXDPMScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
vae=vae, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor_spatial = ( |
|
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 |
|
) |
|
self.vae_scale_factor_temporal = ( |
|
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 |
|
) |
|
self.vae_scaling_factor_image = ( |
|
self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7 |
|
) |
|
|
|
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) |
|
|
|
|
|
def _get_t5_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_videos_per_prompt: int = 1, |
|
max_sequence_length: int = 226, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_sequence_length, |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
f" {max_sequence_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
do_classifier_free_guidance: bool = True, |
|
num_videos_per_prompt: int = 1, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
max_sequence_length: int = 226, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): |
|
Whether to use classifier free guidance or not. |
|
num_videos_per_prompt (`int`, *optional*, defaults to 1): |
|
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
device: (`torch.device`, *optional*): |
|
torch device |
|
dtype: (`torch.dtype`, *optional*): |
|
torch dtype |
|
""" |
|
device = device or self._execution_device |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
prompt_embeds = self._get_t5_prompt_embeds( |
|
prompt=prompt, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
|
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
|
|
negative_prompt_embeds = self._get_t5_prompt_embeds( |
|
prompt=negative_prompt, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
def prepare_latents( |
|
self, |
|
image: torch.Tensor, |
|
batch_size: int = 1, |
|
num_channels_latents: int = 16, |
|
num_frames: int = 13, |
|
height: int = 60, |
|
width: int = 90, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
kps_cond: Optional[torch.Tensor] = None, |
|
): |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 |
|
shape = ( |
|
batch_size, |
|
num_frames, |
|
num_channels_latents, |
|
height // self.vae_scale_factor_spatial, |
|
width // self.vae_scale_factor_spatial, |
|
) |
|
|
|
image = image.unsqueeze(2) |
|
|
|
if isinstance(generator, list): |
|
image_latents = [ |
|
retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i]) for i in range(batch_size) |
|
] |
|
if kps_cond is not None: |
|
kps_cond = kps_cond.unsqueeze(2) |
|
kps_cond_latents = [ |
|
retrieve_latents(self.vae.encode(kps_cond[i].unsqueeze(0)), generator[i]) |
|
for i in range(batch_size) |
|
] |
|
else: |
|
image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image] |
|
if kps_cond is not None: |
|
kps_cond = kps_cond.unsqueeze(2) |
|
kps_cond_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in kps_cond] |
|
|
|
image_latents = torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) |
|
image_latents = self.vae_scaling_factor_image * image_latents |
|
|
|
if kps_cond is not None: |
|
kps_cond_latents = torch.cat(kps_cond_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) |
|
kps_cond_latents = self.vae_scaling_factor_image * kps_cond_latents |
|
|
|
padding_shape = ( |
|
batch_size, |
|
num_frames - 2, |
|
num_channels_latents, |
|
height // self.vae_scale_factor_spatial, |
|
width // self.vae_scale_factor_spatial, |
|
) |
|
else: |
|
padding_shape = ( |
|
batch_size, |
|
num_frames - 1, |
|
num_channels_latents, |
|
height // self.vae_scale_factor_spatial, |
|
width // self.vae_scale_factor_spatial, |
|
) |
|
|
|
latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype) |
|
if kps_cond is not None: |
|
image_latents = torch.cat([image_latents, kps_cond_latents, latent_padding], dim=1) |
|
else: |
|
image_latents = torch.cat([image_latents, latent_padding], dim=1) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents, image_latents |
|
|
|
|
|
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: |
|
latents = latents.permute(0, 2, 1, 3, 4) |
|
latents = 1 / self.vae_scaling_factor_image * latents |
|
|
|
frames = self.vae.decode(latents).sample |
|
return frames |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, timesteps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = timesteps[t_start * self.scheduler.order :] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
image, |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt, |
|
callback_on_step_end_tensor_inputs, |
|
latents=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if ( |
|
not isinstance(image, torch.Tensor) |
|
and not isinstance(image, PIL.Image.Image) |
|
and not isinstance(image, list) |
|
): |
|
raise ValueError( |
|
"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" |
|
f" {type(image)}" |
|
) |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
def _prepare_rotary_positional_embeddings( |
|
self, |
|
height: int, |
|
width: int, |
|
num_frames: int, |
|
device: torch.device, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) |
|
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) |
|
base_size_width = self.transformer.config.sample_width // self.transformer.config.patch_size |
|
base_size_height = self.transformer.config.sample_height // self.transformer.config.patch_size |
|
|
|
grid_crops_coords = get_resize_crop_region_for_grid( |
|
(grid_height, grid_width), base_size_width, base_size_height |
|
) |
|
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( |
|
embed_dim=self.transformer.config.attention_head_dim, |
|
crops_coords=grid_crops_coords, |
|
grid_size=(grid_height, grid_width), |
|
temporal_size=num_frames, |
|
device=device, |
|
) |
|
|
|
return freqs_cos, freqs_sin |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def attention_kwargs(self): |
|
return self._attention_kwargs |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
image: PipelineImageInput, |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
height: int = 480, |
|
width: int = 720, |
|
num_frames: int = 49, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 6.0, |
|
use_dynamic_cfg: bool = False, |
|
num_videos_per_prompt: int = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: str = "pil", |
|
return_dict: bool = True, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[ |
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] |
|
] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 226, |
|
id_vit_hidden: Optional[torch.Tensor] = None, |
|
id_cond: Optional[torch.Tensor] = None, |
|
kps_cond: Optional[torch.Tensor] = None, |
|
) -> Union[ConsisIDPipelineOutput, Tuple]: |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
image (`PipelineImageInput`): |
|
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): |
|
The height in pixels of the generated image. This is set to 480 by default for the best results. |
|
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): |
|
The width in pixels of the generated image. This is set to 720 by default for the best results. |
|
num_frames (`int`, defaults to `49`): |
|
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will |
|
contain 1 extra frame because ConsisID is conditioned with (num_seconds * fps + 1) frames where |
|
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that |
|
needs to be satisfied is that of divisibility mentioned above. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 6): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
use_dynamic_cfg (`bool`, *optional*, defaults to `False`): |
|
If True, dynamically adjusts the guidance scale during inference. This allows the model to use a |
|
progressive guidance scale, improving the balance between text-guided generation and image quality over |
|
the course of the inference steps. Typically, early inference steps use a higher guidance scale for |
|
more faithful image generation, while later steps reduce it for more diverse and natural results. |
|
num_videos_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of videos to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int`, defaults to `226`): |
|
Maximum sequence length in encoded prompt. Must be consistent with |
|
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results. |
|
id_vit_hidden (`Optional[torch.Tensor]`, *optional*): |
|
The tensor representing the hidden features extracted from the face model, which are used to condition |
|
the local facial extractor. This is crucial for the model to obtain high-frequency information of the |
|
face. If not provided, the local facial extractor will not run normally. |
|
id_cond (`Optional[torch.Tensor]`, *optional*): |
|
The tensor representing the hidden features extracted from the clip model, which are used to condition |
|
the local facial extractor. This is crucial for the model to edit facial features If not provided, the |
|
local facial extractor will not run normally. |
|
kps_cond (`Optional[torch.Tensor]`, *optional*): |
|
A tensor that determines whether the global facial extractor use keypoint information for conditioning. |
|
If provided, this tensor controls whether facial keypoints such as eyes, nose, and mouth landmarks are |
|
used during the generation process. This helps ensure the model retains more facial low-frequency |
|
information. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] or `tuple`: |
|
[`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial |
|
width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial |
|
num_frames = num_frames or self.transformer.config.sample_frames |
|
|
|
num_videos_per_prompt = 1 |
|
|
|
|
|
self.check_inputs( |
|
image=image, |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
negative_prompt=negative_prompt, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
latents=latents, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
self._guidance_scale = guidance_scale |
|
self._attention_kwargs = attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
) |
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
is_kps = getattr(self.transformer.config, "is_kps", False) |
|
kps_cond = kps_cond if is_kps else None |
|
if kps_cond is not None: |
|
kps_cond = draw_kps(image, kps_cond) |
|
kps_cond = self.video_processor.preprocess(kps_cond, height=height, width=width).to( |
|
device, dtype=prompt_embeds.dtype |
|
) |
|
|
|
image = self.video_processor.preprocess(image, height=height, width=width).to( |
|
device, dtype=prompt_embeds.dtype |
|
) |
|
|
|
latent_channels = self.transformer.config.in_channels // 2 |
|
latents, image_latents = self.prepare_latents( |
|
image, |
|
batch_size * num_videos_per_prompt, |
|
latent_channels, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
kps_cond, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
image_rotary_emb = ( |
|
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) |
|
if self.transformer.config.use_rotary_positional_embeddings |
|
else None |
|
) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
|
|
old_pred_original_sample = None |
|
timesteps_cpu = timesteps.cpu() |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents |
|
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) |
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep=timestep, |
|
image_rotary_emb=image_rotary_emb, |
|
attention_kwargs=attention_kwargs, |
|
return_dict=False, |
|
id_vit_hidden=id_vit_hidden, |
|
id_cond=id_cond, |
|
)[0] |
|
noise_pred = noise_pred.float() |
|
|
|
|
|
if use_dynamic_cfg: |
|
self._guidance_scale = 1 + guidance_scale * ( |
|
( |
|
1 |
|
- math.cos( |
|
math.pi |
|
* ((num_inference_steps - timesteps_cpu[i].item()) / num_inference_steps) ** 5.0 |
|
) |
|
) |
|
/ 2 |
|
) |
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if not isinstance(self.scheduler, CogVideoXDPMScheduler): |
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
else: |
|
latents, old_pred_original_sample = self.scheduler.step( |
|
noise_pred, |
|
old_pred_original_sample, |
|
t, |
|
timesteps[i - 1] if i > 0 else None, |
|
latents, |
|
**extra_step_kwargs, |
|
return_dict=False, |
|
) |
|
latents = latents.to(prompt_embeds.dtype) |
|
|
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if not output_type == "latent": |
|
video = self.decode_latents(latents) |
|
video = self.video_processor.postprocess_video(video=video, output_type=output_type) |
|
else: |
|
video = latents |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (video,) |
|
|
|
return ConsisIDPipelineOutput(frames=video) |