File size: 35,645 Bytes
253894c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
import gradio as gr
import shutil
from chains.local_doc_qa import LocalDocQA
from configs.model_config import *
import nltk
import models.shared as shared
from models.loader.args import parser
from models.loader import LoaderCheckPoint
import os
import pandas as pd
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
def get_vs_list():
lst_default = ["python_bot"]
if not os.path.exists(KB_ROOT_PATH):
return lst_default
lst = os.listdir(KB_ROOT_PATH)
if not lst:
return lst_default
lst.sort()
return lst_default + lst
embedding_model_dict_list = list(embedding_model_dict.keys())
llm_model_dict_list = list(llm_model_dict.keys())
local_doc_qa = LocalDocQA()
flag_csv_logger = gr.CSVLogger()
user = "None"
users = [
("wsy", "123456"),
("wdy", "654321"),
("lhj", "123456"),
("hhy", "123456"),
("yl", "123456"),
("hy", "123456"),
]
# mode = "知识库问答"
vs_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/knowledge_base"
def get_answer(query, vs_path, history, mode, score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_conent: bool = True,
chunk_size=CHUNK_SIZE, streaming: bool = STREAMING):
# if mode == "Bing搜索问答":
# for resp, history in local_doc_qa.get_search_result_based_answer(
# query=query, chat_history=history, streaming=streaming):
# source = "\n\n"
# source += "".join(
# [
# f"""<details> <summary>出处 [{i + 1}] <a href="{doc.metadata["source"]}" target="_blank">{doc.metadata["source"]}</a> </summary>\n"""
# f"""{doc.page_content}\n"""
# f"""</details>"""
# for i, doc in
# enumerate(resp["source_documents"])])
# history[-1][-1] += source
# yield history, ""
if mode == "知识库问答" and vs_path is not None and os.path.exists(vs_path) and "index.faiss" in os.listdir(
vs_path):
for resp, history in local_doc_qa.get_knowledge_based_answer(
query=query, vs_path=vs_path, chat_history=history, streaming=streaming):
source = "\n\n"
source += "".join(
[f"""<details> <summary>出处 [{i + 1}] {os.path.split(doc.metadata["source"])[-1]}</summary>\n"""
f"""{doc.page_content}\n"""
f"""</details>"""
for i, doc in
enumerate(resp["source_documents"])])
history[-1][-1] += source
yield history, ""
# elif mode == "知识库测试":
# if os.path.exists(vs_path):
# resp, prompt = local_doc_qa.get_knowledge_based_conent_test(query=query, vs_path=vs_path,
# score_threshold=score_threshold,
# vector_search_top_k=vector_search_top_k,
# chunk_conent=chunk_conent,
# chunk_size=chunk_size)
# if not resp["source_documents"]:
# yield history + [[query,
# "根据您的设定,没有匹配到任何内容,请确认您设置的知识相关度 Score 阈值是否过小或其他参数是否正确。"]], ""
# else:
# source = "\n".join(
# [
# f"""<details open> <summary>【知识相关度 Score】:{doc.metadata["score"]} - 【出处{i + 1}】: {os.path.split(doc.metadata["source"])[-1]} </summary>\n"""
# f"""{doc.page_content}\n"""
# f"""</details>"""
# for i, doc in
# enumerate(resp["source_documents"])])
# history.append([query, "以下内容为知识库中满足设置条件的匹配结果:\n\n" + source])
# yield history, ""
# else:
# yield history + [[query,
# "请选择知识库后进行测试,当前未选择知识库。"]], ""
else:
answer_result_stream_result = local_doc_qa.llm_model_chain(
{"prompt": query, "history": history, "streaming": streaming})
for answer_result in answer_result_stream_result['answer_result_stream']:
resp = answer_result.llm_output["answer"]
history = answer_result.history
history[-1][-1] = resp
yield history, ""
logger.info(f"flagging: username={user},query={query},vs_path={vs_path},mode={mode},history={history}")
flag_csv_logger.flag([query, vs_path, history, mode], username=user)
def init_model():
args = parser.parse_args()
args_dict = vars(args)
shared.loaderCheckPoint = LoaderCheckPoint(args_dict)
llm_model_ins = shared.loaderLLM()
llm_model_ins.history_len = LLM_HISTORY_LEN
try:
local_doc_qa.init_cfg(llm_model=llm_model_ins)
answer_result_stream_result = local_doc_qa.llm_model_chain(
{"prompt": "你好", "history": [], "streaming": False})
for answer_result in answer_result_stream_result['answer_result_stream']:
print(answer_result.llm_output)
reply = """模型已成功加载,可以开始对话"""
logger.info(reply)
return reply
except Exception as e:
logger.error(e)
reply = """模型未成功加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
if str(e) == "Unknown platform: darwin":
logger.info("该报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:"
" https://github.com/imClumsyPanda/langchain-ChatGLM")
else:
logger.info(reply)
return reply
def reinit_model(llm_model, embedding_model, llm_history_len, no_remote_model, use_ptuning_v2, use_lora, top_k,
history):
try:
llm_model_ins = shared.loaderLLM(llm_model, no_remote_model, use_ptuning_v2)
llm_model_ins.history_len = llm_history_len
local_doc_qa.init_cfg(llm_model=llm_model_ins,
embedding_model=embedding_model,
top_k=top_k)
model_status = """模型已成功重新加载"""
logger.info(model_status)
except Exception as e:
logger.error(e)
model_status = """模型未成功重新加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
logger.info(model_status)
return history + [[None, model_status]]
def get_vector_store(vs_id, files, sentence_size, history, one_conent, one_content_segmentation):
vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store")
filelist = []
if local_doc_qa.llm_model_chain and local_doc_qa.embeddings:
if isinstance(files, list):
for file in files:
filename = os.path.split(file.name)[-1]
shutil.move(file.name, os.path.join(KB_ROOT_PATH, vs_id, "content", filename))
filelist.append(os.path.join(KB_ROOT_PATH, vs_id, "content", filename))
vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store(filelist, vs_path, sentence_size)
else:
vs_path, loaded_files = local_doc_qa.one_knowledge_add(vs_path, files, one_conent, one_content_segmentation,
sentence_size)
if len(loaded_files):
file_status = f"已添加 {'、'.join([os.path.split(i)[-1] for i in loaded_files if i])} 内容至知识库,并已加载知识库,请开始提问"
else:
file_status = "文件未成功加载,请重新上传文件"
else:
file_status = "模型未完成加载,请先在加载模型后再导入文件"
vs_path = None
logger.info(file_status)
return vs_path, None, history + [[None, file_status]], \
gr.update(choices=local_doc_qa.list_file_from_vector_store(vs_path) if vs_path else [])
def change_vs_name_input(vs_id, history):
if vs_id == "新建知识库":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), None, history, \
gr.update(choices=[]), gr.update(visible=False)
else:
vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store")
if "index.faiss" in os.listdir(vs_path):
file_status = f"已加载知识库{vs_id},请开始提问"
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), \
vs_path, history + [[None, file_status]], \
gr.update(choices=local_doc_qa.list_file_from_vector_store(vs_path), value=[]), \
gr.update(visible=True)
else:
file_status = f"已选择知识库{vs_id},当前知识库中未上传文件,请先上传文件后,再开始提问"
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), \
vs_path, history + [[None, file_status]], \
gr.update(choices=[], value=[]), gr.update(visible=True, value=[])
knowledge_base_test_mode_info = ("【注意】\n\n"
"1. 您已进入知识库测试模式,您输入的任何对话内容都将用于进行知识库查询,"
"并仅输出知识库匹配出的内容及相似度分值和及输入的文本源路径,查询的内容并不会进入模型查询。\n\n"
"2. 知识相关度 Score 经测试,建议设置为 500 或更低,具体设置情况请结合实际使用调整。"
"""3. 使用"添加单条数据"添加文本至知识库时,内容如未分段,则内容越多越会稀释各查询内容与之关联的score阈值。\n\n"""
"4. 单条内容长度建议设置在100-150左右。\n\n"
"5. 本界面用于知识入库及知识匹配相关参数设定,但当前版本中,"
"本界面中修改的参数并不会直接修改对话界面中参数,仍需前往`configs/model_config.py`修改后生效。"
"相关参数将在后续版本中支持本界面直接修改。")
def change_mode(mode, history):
if mode == "知识库问答":
return gr.update(visible=True), gr.update(visible=False), history
# + [[None, "【注意】:您已进入知识库问答模式,您输入的任何查询都将进行知识库查询,然后会自动整理知识库关联内容进入模型查询!!!"]]
elif mode == "知识库测试":
return gr.update(visible=True), gr.update(visible=True), [[None,
knowledge_base_test_mode_info]]
else:
return gr.update(visible=False), gr.update(visible=False), history
def change_chunk_conent(mode, label_conent, history):
conent = ""
if "chunk_conent" in label_conent:
conent = "搜索结果上下文关联"
elif "one_content_segmentation" in label_conent: # 这里没用上,可以先留着
conent = "内容分段入库"
if mode:
return gr.update(visible=True), history + [[None, f"【已开启{conent}】"]]
else:
return gr.update(visible=False), history + [[None, f"【已关闭{conent}】"]]
def add_vs_name(vs_name, chatbot):
if vs_name is None or vs_name.strip() == "":
vs_status = "知识库名称不能为空,请重新填写知识库名称"
chatbot = chatbot + [[None, vs_status]]
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(
visible=False), chatbot, gr.update(visible=False)
elif vs_name in get_vs_list():
vs_status = "与已有知识库名称冲突,请重新选择其他名称后提交"
chatbot = chatbot + [[None, vs_status]]
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(
visible=False), chatbot, gr.update(visible=False)
else:
# 新建上传文件存储路径
if not os.path.exists(os.path.join(KB_ROOT_PATH, vs_name, "content")):
os.makedirs(os.path.join(KB_ROOT_PATH, vs_name, "content"))
# 新建向量库存储路径
if not os.path.exists(os.path.join(KB_ROOT_PATH, vs_name, "vector_store")):
os.makedirs(os.path.join(KB_ROOT_PATH, vs_name, "vector_store"))
vs_status = f"""已新增知识库"{vs_name}",将在上传文件并载入成功后进行存储。请在开始对话前,先完成文件上传。 """
chatbot = chatbot + [[None, vs_status]]
return gr.update(visible=True, choices=get_vs_list(), value=vs_name), gr.update(
visible=False), gr.update(visible=False), gr.update(visible=True), chatbot, gr.update(visible=True)
# 自动化加载固定文件间中文件
def reinit_vector_store(vs_id, history):
try:
shutil.rmtree(os.path.join(KB_ROOT_PATH, vs_id, "vector_store"))
vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store")
sentence_size = gr.Number(value=SENTENCE_SIZE, precision=0,
label="文本入库分句长度限制",
interactive=True, visible=True)
vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store(os.path.join(KB_ROOT_PATH, vs_id, "content"),
vs_path, sentence_size)
model_status = """知识库构建成功"""
except Exception as e:
logger.error(e)
model_status = """知识库构建未成功"""
logger.info(model_status)
return history + [[None, model_status]]
def refresh_vs_list():
return gr.update(choices=get_vs_list()), gr.update(choices=get_vs_list())
def delete_file(vs_id, files_to_delete, chatbot):
vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store")
content_path = os.path.join(KB_ROOT_PATH, vs_id, "content")
docs_path = [os.path.join(content_path, file) for file in files_to_delete]
status = local_doc_qa.delete_file_from_vector_store(vs_path=vs_path,
filepath=docs_path)
if "fail" not in status:
for doc_path in docs_path:
if os.path.exists(doc_path):
os.remove(doc_path)
rested_files = local_doc_qa.list_file_from_vector_store(vs_path)
if "fail" in status:
vs_status = "文件删除失败。"
elif len(rested_files) > 0:
vs_status = "文件删除成功。"
else:
vs_status = f"文件删除成功,知识库{vs_id}中无已上传文件,请先上传文件后,再开始提问。"
logger.info(",".join(files_to_delete) + vs_status)
chatbot = chatbot + [[None, vs_status]]
return gr.update(choices=local_doc_qa.list_file_from_vector_store(vs_path), value=[]), chatbot
def delete_vs(vs_id, chatbot):
try:
shutil.rmtree(os.path.join(KB_ROOT_PATH, vs_id))
status = f"成功删除知识库{vs_id}"
logger.info(status)
chatbot = chatbot + [[None, status]]
return gr.update(choices=get_vs_list(), value=get_vs_list()[0]), gr.update(visible=True), gr.update(
visible=True), \
gr.update(visible=False), chatbot, gr.update(visible=False)
except Exception as e:
logger.error(e)
status = f"删除知识库{vs_id}失败"
chatbot = chatbot + [[None, status]]
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=True), chatbot, gr.update(visible=True)
block_css = """.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}"""
webui_title = """
# 🎉Welcome Python bot🎉
"""
# default_vs = get_vs_list()[0] if len(get_vs_list()) > 1 else "为空"
init_message = f"""欢迎使用 Python bot!
在下侧对话框输入问题后,按下Shift+回车即可换行继续输入,按下回车即可获得回复!
若想询问程序报错相关问题,将报错信息最后的报错原因贴上来即可。
"""
# 初始化消息
model_status = init_model()
default_theme_args = dict(
font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'],
font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
)
with gr.Blocks(css=block_css, theme=gr.themes.Default(**default_theme_args)) as demo:
vs_path, file_status, model_status = gr.State(
os.path.join(KB_ROOT_PATH, get_vs_list()[0], "vector_store") if len(get_vs_list()) > 1 else ""), gr.State(
""), gr.State(
model_status)
gr.Markdown(webui_title)
with gr.Tab("对话"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]],
elem_id="chat-box",
show_label=False).style(height=750)
query = gr.Textbox(show_label=False,
placeholder="请输入提问内容,按回车进行提交").style(container=False)
# with gr.Column(scale=5):
mode = gr.Radio(["知识库问答"],
show_label=False,
value="知识库问答" )
# knowledge_set = gr.Accordion("知识库设定", visible=False)
# vs_setting = gr.Accordion("配置知识库")
# mode.change(fn=change_mode,
# inputs=[mode, chatbot],
# outputs=[vs_setting, knowledge_set, chatbot])
# with vs_setting:
# vs_refresh = gr.Button("更新已有知识库选项")
# select_vs = gr.Dropdown(get_vs_list(),
# label="请选择要加载的知识库",
# interactive=True,
# value=get_vs_list()[0] if len(get_vs_list()) > 0 else None
# )
# vs_name = gr.Textbox(label="请输入新建知识库名称,当前知识库命名暂不支持中文",
# lines=1,
# interactive=True,
# visible=True)
# vs_add = gr.Button(value="添加至知识库选项", visible=True)
# vs_delete = gr.Button("删除本知识库", visible=False)
# file2vs = gr.Column(visible=False)
# with file2vs:
# load_vs = gr.Button("加载知识库")
# gr.Markdown("向知识库中添加文件")
# sentence_size = gr.Number(value=SENTENCE_SIZE, precision=0,
# label="文本入库分句长度限制",
# interactive=True, visible=True)
# with gr.Tab("上传文件"):
# files = gr.File(label="添加文件",
# file_types=['.txt', '.md', '.docx', '.pdf', '.png', '.jpg', ".csv"],
# file_count="multiple",
# show_label=False)
# load_file_button = gr.Button("上传文件并加载知识库")
# with gr.Tab("上传文件夹"):
# folder_files = gr.File(label="添加文件",
# file_count="directory",
# show_label=False)
# load_folder_button = gr.Button("上传文件夹并加载知识库")
# with gr.Tab("删除文件"):
# files_to_delete = gr.CheckboxGroup(choices=[],
# label="请从知识库已有文件中选择要删除的文件",
# interactive=True)
# delete_file_button = gr.Button("从知识库中删除选中文件")
# vs_refresh.click(fn=refresh_vs_list,
# inputs=[],
# outputs=select_vs)
# vs_add.click(fn=add_vs_name,
# inputs=[vs_name, chatbot],
# outputs=[select_vs, vs_name, vs_add, file2vs, chatbot, vs_delete])
# vs_delete.click(fn=delete_vs,
# inputs=[select_vs, chatbot],
# outputs=[select_vs, vs_name, vs_add, file2vs, chatbot, vs_delete])
# select_vs.change(fn=change_vs_name_input,
# inputs=[select_vs, chatbot],
# outputs=[vs_name, file2vs, vs_path, chatbot])
# load_file_button.click(get_vector_store,
# show_progress=True,
# inputs=[select_vs, files, sentence_size, chatbot],
# outputs=[vs_path, files, chatbot, files_to_delete], )
# load_folder_button.click(get_vector_store,
# show_progress=True,
# inputs=[select_vs, folder_files, sentence_size, chatbot, vs_add,
# vs_add],
# outputs=[vs_path, folder_files, chatbot, files_to_delete], )
flag_csv_logger.setup([query, vs_path, chatbot, mode], "student_log")
query.submit(get_answer,
[query, vs_path, chatbot, mode],
[chatbot, query])
# delete_file_button.click(delete_file,
# show_progress=True,
# inputs=[select_vs, files_to_delete, chatbot],
# outputs=[files_to_delete, chatbot])
# with gr.Tab("知识库测试 Beta"):
# with gr.Row():
# with gr.Column(scale=10):
# chatbot = gr.Chatbot([[None, knowledge_base_test_mode_info]],
# elem_id="chat-box",
# show_label=False).style(height=750)
# query = gr.Textbox(show_label=False,
# placeholder="请输入提问内容,按回车进行提交").style(container=False)
# with gr.Column(scale=5):
# mode = gr.Radio(["知识库测试"], # "知识库问答",
# label="请选择使用模式",
# value="知识库测试",
# visible=False)
# knowledge_set = gr.Accordion("知识库设定", visible=True)
# vs_setting = gr.Accordion("配置知识库", visible=True)
# mode.change(fn=change_mode,
# inputs=[mode, chatbot],
# outputs=[vs_setting, knowledge_set, chatbot])
# with knowledge_set:
# score_threshold = gr.Number(value=VECTOR_SEARCH_SCORE_THRESHOLD,
# label="知识相关度 Score 阈值,分值越低匹配度越高",
# precision=0,
# interactive=True)
# vector_search_top_k = gr.Number(value=VECTOR_SEARCH_TOP_K, precision=0,
# label="获取知识库内容条数", interactive=True)
# chunk_conent = gr.Checkbox(value=False,
# label="是否启用上下文关联",
# interactive=True)
# chunk_sizes = gr.Number(value=CHUNK_SIZE, precision=0,
# label="匹配单段内容的连接上下文后最大长度",
# interactive=True, visible=False)
# chunk_conent.change(fn=change_chunk_conent,
# inputs=[chunk_conent, gr.Textbox(value="chunk_conent", visible=False), chatbot],
# outputs=[chunk_sizes, chatbot])
# with vs_setting:
# vs_refresh = gr.Button("更新已有知识库选项")
# select_vs_test = gr.Dropdown(get_vs_list(),
# label="请选择要加载的知识库",
# interactive=True,
# value=get_vs_list()[0] if len(get_vs_list()) > 0 else None)
# vs_name = gr.Textbox(label="请输入新建知识库名称,当前知识库命名暂不支持中文",
# lines=1,
# interactive=True,
# visible=True)
# vs_add = gr.Button(value="添加至知识库选项", visible=True)
# file2vs = gr.Column(visible=False)
# with file2vs:
# # load_vs = gr.Button("加载知识库")
# gr.Markdown("向知识库中添加单条内容或文件")
# sentence_size = gr.Number(value=SENTENCE_SIZE, precision=0,
# label="文本入库分句长度限制",
# interactive=True, visible=True)
# with gr.Tab("上传文件"):
# files = gr.File(label="添加文件",
# file_types=['.txt', '.md', '.docx', '.pdf'],
# file_count="multiple",
# show_label=False
# )
# load_file_button = gr.Button("上传文件并加载知识库")
# with gr.Tab("上传文件夹"):
# folder_files = gr.File(label="添加文件",
# # file_types=['.txt', '.md', '.docx', '.pdf'],
# file_count="directory",
# show_label=False)
# load_folder_button = gr.Button("上传文件夹并加载知识库")
# with gr.Tab("添加单条内容"):
# one_title = gr.Textbox(label="标题", placeholder="请输入要添加单条段落的标题", lines=1)
# one_conent = gr.Textbox(label="内容", placeholder="请输入要添加单条段落的内容", lines=5)
# one_content_segmentation = gr.Checkbox(value=True, label="禁止内容分句入库",
# interactive=True)
# load_conent_button = gr.Button("添加内容并加载知识库")
# # 将上传的文件保存到content文件夹下,并更新下拉框
# vs_refresh.click(fn=refresh_vs_list,
# inputs=[],
# outputs=[select_vs, select_vs_test])
# vs_add.click(fn=add_vs_name,
# inputs=[vs_name, chatbot],
# outputs=[select_vs_test, vs_name, vs_add, file2vs, chatbot])
# select_vs_test.change(fn=change_vs_name_input,
# inputs=[select_vs_test, chatbot],
# outputs=[vs_name, vs_add, file2vs, vs_path, chatbot])
# load_file_button.click(get_vector_store,
# show_progress=True,
# inputs=[select_vs_test, files, sentence_size, chatbot, vs_add, vs_add],
# outputs=[vs_path, files, chatbot], )
# load_folder_button.click(get_vector_store,
# show_progress=True,
# inputs=[select_vs_test, folder_files, sentence_size, chatbot, vs_add,
# vs_add],
# outputs=[vs_path, folder_files, chatbot], )
# load_conent_button.click(get_vector_store,
# show_progress=True,
# inputs=[select_vs_test, one_title, sentence_size, chatbot,
# one_conent, one_content_segmentation],
# outputs=[vs_path, files, chatbot], )
# flag_csv_logger.setup([query, vs_path, chatbot, mode], "flagged")
# query.submit(get_answer,
# [query, vs_path, chatbot, mode, score_threshold, vector_search_top_k, chunk_conent,
# chunk_sizes],
# [chatbot, query])
# with gr.Tab("模型配置"):
# llm_model = gr.Radio(llm_model_dict_list,
# label="LLM 模型",
# value=LLM_MODEL,
# interactive=True)
# no_remote_model = gr.Checkbox(shared.LoaderCheckPoint.no_remote_model,
# label="加载本地模型",
# interactive=True)
# llm_history_len = gr.Slider(0, 10,
# value=LLM_HISTORY_LEN,
# step=1,
# label="LLM 对话轮数",
# interactive=True)
# use_ptuning_v2 = gr.Checkbox(USE_PTUNING_V2,
# label="使用p-tuning-v2微调过的模型",
# interactive=True)
# use_lora = gr.Checkbox(USE_LORA,
# label="使用lora微调的权重",
# interactive=True)
# embedding_model = gr.Radio(embedding_model_dict_list,
# label="Embedding 模型",
# value=EMBEDDING_MODEL,
# interactive=True)
# top_k = gr.Slider(1, 20, value=VECTOR_SEARCH_TOP_K, step=1,
# label="向量匹配 top k", interactive=True)
# load_model_button = gr.Button("重新加载模型")
# load_model_button.click(reinit_model, show_progress=True,
# inputs=[llm_model, embedding_model, llm_history_len, no_remote_model, use_ptuning_v2,
# use_lora, top_k, chatbot], outputs=chatbot)
# load_knowlege_button = gr.Button("重新构建知识库")
# load_knowlege_button.click(reinit_vector_store, show_progress=True,
# inputs=[select_vs, chatbot], outputs=chatbot)
def gradio_callback(inputs, outputs):
# 获取用户输入的用户名
username = inputs['username']
# 在这里处理用户名,例如打印出来
print("Current username:", username)
def student():
hy1_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/hy_student1.xlsx"
hy2_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/hy_student2.xlsx"
lhj_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/lhj_student.xlsx"
ygc_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/ygc_student.xlsx"
yl_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/yl_student.xlsx"
zsg1_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/zsg_student1.xlsx"
zsg2_path = "/home/wsy/Langchain-chat/Langchain-Chatchat/stuendt/zsg_student2.xlsx"
hy1_student_data = pd.DataFrame(pd.read_excel(hy1_path))
hy2_student_data = pd.DataFrame(pd.read_excel(hy2_path))
lhj_student_data = pd.DataFrame(pd.read_excel(lhj_path))
ygc_student_data = pd.DataFrame(pd.read_excel(ygc_path))
yl_student_data = pd.DataFrame(pd.read_excel(yl_path))
zsg1_student_data = pd.DataFrame(pd.read_excel(zsg1_path))
zsg2_student_data = pd.DataFrame(pd.read_excel(zsg2_path))
hy1_student = list(hy1_student_data[['姓名', '学号']].apply(tuple, axis=1))
hy2_student = list(hy2_student_data[['姓名', '学号']].apply(tuple, axis=1))
lhj_student = list(lhj_student_data[['姓名', '学号']].apply(tuple, axis=1))
ygc_student = list(ygc_student_data[['姓名', '学号']].apply(tuple, axis=1))
yl_student = list(yl_student_data[['姓名', '学号']].apply(tuple, axis=1))
zsg1_student = list(zsg1_student_data[['姓名', '学号']].apply(tuple, axis=1))
zsg2_student = list(zsg2_student_data[['姓名', '学号']].apply(tuple, axis=1))
student = hy1_student + hy2_student + lhj_student + ygc_student + yl_student + zsg1_student + zsg2_student
for i in range(len(student)):
password = student[i][1]
student[i] = (student[i][0], str(password))
return student
def login(x, y):
users = student()
for username, password in users:
if username == x and password == y:
global user
user = username
return x, y
# demo.load(
# fn=refresh_vs_list,
# inputs=None,
# outputs=[select_vs],
# queue=True,
# show_progress=False,
# )
(demo
.queue(concurrency_count=30) #test
.launch(server_name='0.0.0.0',
server_port=7860,
show_api=False,
share=False,
inbrowser=False,
auth=login)
)
|