Spaces:
Running
Running
from fastapi.staticfiles import StaticFiles | |
from fastapi.responses import FileResponse | |
from pydantic import BaseModel | |
from fastapi import FastAPI | |
import os | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoModelForCausalLM, AutoTokenizer | |
import torch | |
app = FastAPI() | |
name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
customGen = False | |
gpt2based = False | |
# microsoft/DialoGPT-small | |
# microsoft/DialoGPT-medium | |
# microsoft/DialoGPT-large | |
# mistralai/Mixtral-8x7B-Instruct-v0.1 | |
# Load the Hugging Face GPT-2 model and tokenizer | |
model = AutoModelForCausalLM.from_pretrained(name) | |
tokenizer = AutoTokenizer.from_pretrained(name) | |
gpt2model = GPT2LMHeadModel.from_pretrained(name) | |
gpt2tokenizer = GPT2Tokenizer.from_pretrained(name) | |
class req(BaseModel): | |
prompt: str | |
length: int | |
def read_root(): | |
return FileResponse(path="templates/index.html", media_type="text/html") | |
def read_root(data: req): | |
print("Prompt:", data.prompt) | |
print("Length:", data.length) | |
if (name == "microsoft/DialoGPT-small" or name == "microsoft/DialoGPT-medium" or name == "microsoft/DialoGPT-large") and customGen == True: | |
# tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small") | |
# model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small") | |
step = 1 | |
# encode the new user input, add the eos_token and return a tensor in Pytorch | |
new_user_input_ids = tokenizer.encode(data.prompt + tokenizer.eos_token, return_tensors='pt') | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat(new_user_input_ids, dim=-1) if step > 0 else new_user_input_ids | |
# generated a response while limiting the total chat history to 1000 tokens, | |
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) | |
generated_text = tokenizer.decode(chat_history_ids[:, :][0], skip_special_tokens=True) | |
answer_data = { "answer": generated_text } | |
print("Answer:", generated_text) | |
return answer_data | |
else: | |
if gpt2based == True: | |
input_text = data.prompt | |
# Tokenize the input text | |
input_ids = gpt2tokenizer.encode(input_text, return_tensors="pt") | |
# Generate output using the model | |
output_ids = gpt2model.generate(input_ids, max_length=data.length, num_beams=5, no_repeat_ngram_size=2) | |
generated_text = gpt2tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
answer_data = { "answer": generated_text } | |
print("Answer:", generated_text) | |
return answer_data | |
else: | |
input_text = data.prompt | |
# Tokenize the input text | |
input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
# Generate output using the model | |
output_ids = model.generate(input_ids, max_length=data.length, num_beams=5, no_repeat_ngram_size=2) | |
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
answer_data = { "answer": generated_text } | |
print("Answer:", generated_text) | |
return answer_data |