BeveledCube commited on
Commit
06b0b4a
1 Parent(s): 564bd7c

Removed beam thing

Browse files
models/fast.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/gpt2.py CHANGED
@@ -16,6 +16,6 @@ def generate(input_text):
16
  attention_mask = tf.ones_like(input_ids)
17
 
18
  # Generate output using the model
19
- output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100)
20
 
21
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
16
  attention_mask = tf.ones_like(input_ids)
17
 
18
  # Generate output using the model
19
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
20
 
21
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/llama2.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/llama3.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/llamatiny.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/mamba.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/tinystories.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)