BeveledCube commited on
Commit
5525b46
1 Parent(s): c1b0526

re added num_beams

Browse files
models/blenderbot.py CHANGED
@@ -23,6 +23,6 @@ def generate(input_text):
23
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
24
 
25
  # Generate output using the model
26
- output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
27
 
28
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
23
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
24
 
25
  # Generate output using the model
26
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=200, num_beams=2, eos_token_id=tokenizer.eos_token_id)
27
 
28
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/fast.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=200, num_beams=2, eos_token_id=tokenizer.eos_token_id)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/gpt2.py CHANGED
@@ -16,6 +16,6 @@ def generate(input_text):
16
  attention_mask = tf.ones_like(input_ids)
17
 
18
  # Generate output using the model
19
- output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
20
 
21
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
16
  attention_mask = tf.ones_like(input_ids)
17
 
18
  # Generate output using the model
19
+ output_ids = model.generate(input_ids, num_beams=3, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
20
 
21
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/hermes.py CHANGED
@@ -13,6 +13,6 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
13
 
14
  def generate(messages):
15
  gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
16
- output_ids = model.generate(**gen_input, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
17
 
18
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
13
 
14
  def generate(messages):
15
  gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
16
+ output_ids = model.generate(**gen_input, num_beams=3, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
17
 
18
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/llama2.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=200, num_beams=2, eos_token_id=tokenizer.eos_token_id)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/llama3.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=200, num_beams=2, eos_token_id=tokenizer.eos_token_id)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/llamatiny.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=200, num_beams=2, eos_token_id=tokenizer.eos_token_id)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
models/mamba.py CHANGED
@@ -11,6 +11,6 @@ def load():
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
- output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)
 
11
 
12
  def generate(input_text):
13
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
14
+ output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=200, num_beams=2, eos_token_id=tokenizer.eos_token_id)
15
 
16
  return tokenizer.decode(output_ids[0], skip_special_tokens=True)