Spaces:
Sleeping
Sleeping
BeveledCube
commited on
Commit
·
5f6d4f4
1
Parent(s):
838669d
Added gpt2 and fixed shi
Browse files- main.py +5 -2
- models/blenderbot.py +6 -2
- models/gpt2.py +21 -0
- models/hermes.py +9 -2
- models/llama3.py +6 -2
main.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
from flask import Flask, request, render_template, jsonify
|
2 |
-
from models import
|
3 |
|
4 |
app = Flask("AI API")
|
5 |
|
|
|
|
|
|
|
6 |
@app.get("/")
|
7 |
def read_root():
|
8 |
return render_template("index.html")
|
@@ -16,7 +19,7 @@ def receive_data():
|
|
16 |
data = request.get_json()
|
17 |
print("Prompt:", data["prompt"])
|
18 |
|
19 |
-
generated_text =
|
20 |
|
21 |
print("Response:", generated_text)
|
22 |
|
|
|
1 |
from flask import Flask, request, render_template, jsonify
|
2 |
+
from models import gpt2 as chatbot
|
3 |
|
4 |
app = Flask("AI API")
|
5 |
|
6 |
+
pring("Loading model")
|
7 |
+
chatbot.load()
|
8 |
+
|
9 |
@app.get("/")
|
10 |
def read_root():
|
11 |
return render_template("index.html")
|
|
|
19 |
data = request.get_json()
|
20 |
print("Prompt:", data["prompt"])
|
21 |
|
22 |
+
generated_text = chatbot.generate(data["prompt"])
|
23 |
|
24 |
print("Response:", generated_text)
|
25 |
|
models/blenderbot.py
CHANGED
@@ -11,8 +11,12 @@ model_name = "facebook/blenderbot-1B-distill"
|
|
11 |
# facebook/blenderbot-90M
|
12 |
# facebook/blenderbot_small-90M
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def generate(input_text):
|
18 |
# Tokenize the input text
|
|
|
11 |
# facebook/blenderbot-90M
|
12 |
# facebook/blenderbot_small-90M
|
13 |
|
14 |
+
def load():
|
15 |
+
global model
|
16 |
+
global tokenizer
|
17 |
+
|
18 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
|
21 |
def generate(input_text):
|
22 |
# Tokenize the input text
|
models/gpt2.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
|
3 |
+
# https://www.youtube.com/watch?v=irjYqV6EebU
|
4 |
+
|
5 |
+
model_name = "gpt2"
|
6 |
+
|
7 |
+
def load():
|
8 |
+
global model
|
9 |
+
global tokenizer
|
10 |
+
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
def generate(input_text):
|
15 |
+
# Tokenize the input text
|
16 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
17 |
+
|
18 |
+
# Generate output using the model
|
19 |
+
output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2)
|
20 |
+
|
21 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
models/hermes.py
CHANGED
@@ -2,8 +2,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
2 |
|
3 |
model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
|
4 |
|
5 |
-
model =
|
6 |
-
tokenizer =
|
7 |
|
8 |
# Example messages input
|
9 |
# messages = [
|
@@ -11,6 +11,13 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
11 |
# {"role": "user", "content": "Hello, who are you?"}
|
12 |
#]
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def generate(messages):
|
15 |
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
16 |
output_ids = model.generate(**gen_input, num_beams=5, no_repeat_ngram_size=2)
|
|
|
2 |
|
3 |
model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B"
|
4 |
|
5 |
+
model = None
|
6 |
+
tokenizer = None
|
7 |
|
8 |
# Example messages input
|
9 |
# messages = [
|
|
|
11 |
# {"role": "user", "content": "Hello, who are you?"}
|
12 |
#]
|
13 |
|
14 |
+
def load():
|
15 |
+
global model
|
16 |
+
global tokenizer
|
17 |
+
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
+
|
21 |
def generate(messages):
|
22 |
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
23 |
output_ids = model.generate(**gen_input, num_beams=5, no_repeat_ngram_size=2)
|
models/llama3.py
CHANGED
@@ -2,8 +2,12 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
2 |
|
3 |
model_name = "meta-llama/Meta-Llama-3-8B"
|
4 |
|
5 |
-
|
6 |
-
model
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def generate(input_text):
|
9 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
|
|
2 |
|
3 |
model_name = "meta-llama/Meta-Llama-3-8B"
|
4 |
|
5 |
+
def load():
|
6 |
+
global model
|
7 |
+
global tokenizer
|
8 |
+
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|