Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
-
from
|
2 |
-
from fastapi.responses import FileResponse
|
3 |
-
from pydantic import BaseModel
|
4 |
-
from fastapi import FastAPI
|
5 |
-
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
|
8 |
model_name = "facebook/blenderbot-1B-distill"
|
@@ -16,22 +12,24 @@ model_name = "facebook/blenderbot-1B-distill"
|
|
16 |
|
17 |
# https://www.youtube.com/watch?v=irjYqV6EebU
|
18 |
|
19 |
-
app =
|
20 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
|
23 |
-
class req(BaseModel):
|
24 |
-
prompt: str
|
25 |
-
|
26 |
@app.get("/")
|
27 |
def read_root():
|
28 |
-
return
|
29 |
|
30 |
-
@app.
|
31 |
-
def
|
32 |
-
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Tokenize the input text
|
37 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
@@ -41,6 +39,8 @@ def read_root(data: req):
|
|
41 |
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
42 |
|
43 |
answer_data = { "answer": generated_text }
|
44 |
-
print("
|
45 |
|
46 |
-
return answer_data
|
|
|
|
|
|
1 |
+
from flask import Flask, request, render_template, jsonify
|
|
|
|
|
|
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
|
4 |
model_name = "facebook/blenderbot-1B-distill"
|
|
|
12 |
|
13 |
# https://www.youtube.com/watch?v=irjYqV6EebU
|
14 |
|
15 |
+
app = Flask("AI API")
|
16 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
|
|
|
|
|
|
|
19 |
@app.get("/")
|
20 |
def read_root():
|
21 |
+
return render_template("index.html")
|
22 |
|
23 |
+
@app.route("/test")
|
24 |
+
def test_route():
|
25 |
+
return "This is a test route."
|
26 |
|
27 |
+
@app.route("/api", methods=["POST"])
|
28 |
+
def receive_data():
|
29 |
+
data = request.get_json()
|
30 |
+
print("Prompt:", data["prompt"])
|
31 |
+
|
32 |
+
input_text = data["prompt"]
|
33 |
|
34 |
# Tokenize the input text
|
35 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
|
|
39 |
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
40 |
|
41 |
answer_data = { "answer": generated_text }
|
42 |
+
print("Response:", generated_text)
|
43 |
|
44 |
+
return jsonify(answer_data)
|
45 |
+
|
46 |
+
app.run(host="0.0.0.0", port=25428, debug=False)
|