from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "NousResearch/Hermes-2-Pro-Llama-3-8B" model = None tokenizer = None # Example messages input # messages = [ # {"role": "system", "content": "You are Hermes 2."}, # {"role": "user", "content": "Hello, who are you?"} #] def load(): global model global tokenizer model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate(messages): gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") output_ids = model.generate(**gen_input, num_beams=5, no_repeat_ngram_size=2) return tokenizer.decode(output_ids[0], skip_special_tokens=True)