Spaces:
Build error
Build error
File size: 5,097 Bytes
df05824 1d9073c df05824 1d9073c df05824 557ef1f 1d9073c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
title: Text-to-Image Synthesis with AttnGAN
emoji: 🤖
colorFrom: blue
colorTo: gray
sdk: streamlit
sdk_version: 1.40.1
app_file: app.py
pinned: false
---
#### Python 3.7+ and Pytorch 1.x
Referenced from: https://github.com/taoxugit/AttnGAN
## Play with this model: [Demo Link](https://share.streamlit.io/gladiator07/text-to-image-synthesis-with-attngan/main/app.py)
## Sneak-peek into the webapp


# AttnGAN
Pytorch implementation for reproducing AttnGAN results in the paper [AttnGAN: Fine-Grained Text to Image Generation
with Attentional Generative Adversarial Networks](http://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_AttnGAN_Fine-Grained_Text_CVPR_2018_paper.pdf) by Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, Xiaodong He. (This work was performed when Tao was an intern with Microsoft Research).

**Data**
1. Download preprocessed metadata for [birds](https://drive.google.com/open?id=1O_LtUP9sch09QH3s_EBAgLEctBQ5JBSJ) [coco](https://drive.google.com/open?id=1rSnbIGNDGZeHlsUlLdahj0RJ9oo6lgH9) and save them to `data/`
2. Download the [birds](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) image data. Extract them to `data/birds/`
3. Download [coco](http://cocodataset.org/#download) dataset and extract the images to `data/coco/`
**Training**
- Pre-train DAMSM models:
- For bird dataset: `python pretrain_DAMSM.py --cfg cfg/DAMSM/bird.yml --gpu 0`
- For coco dataset: `python pretrain_DAMSM.py --cfg cfg/DAMSM/coco.yml --gpu 1`
- Train AttnGAN models:
- For bird dataset: `python main.py --cfg cfg/bird_attn2.yml --gpu 2`
- For coco dataset: `python main.py --cfg cfg/coco_attn2.yml --gpu 3`
- `*.yml` files are example configuration files for training/evaluation our models.
**Pretrained Model**
- [DAMSM for bird](https://drive.google.com/open?id=1GNUKjVeyWYBJ8hEU-yrfYQpDOkxEyP3V). Download and save it to `DAMSMencoders/`
- [DAMSM for coco](https://drive.google.com/open?id=1zIrXCE9F6yfbEJIbNP5-YrEe2pZcPSGJ). Download and save it to `DAMSMencoders/`
- [AttnGAN for bird](https://drive.google.com/open?id=1lqNG75suOuR_8gjoEPYNp8VyT_ufPPig). Download and save it to `models/`
- [AttnGAN for coco](https://drive.google.com/open?id=1i9Xkg9nU74RAvkcqKE-rJYhjvzKAMnCi). Download and save it to `models/`
- [AttnDCGAN for bird](https://drive.google.com/open?id=19TG0JUoXurxsmZLaJ82Yo6O0UJ6aDBpg). Download and save it to `models/`
- This is an variant of AttnGAN which applies the proposed attention mechanisms to DCGAN framework.
**Sampling**
- Run `python main.py --cfg cfg/eval_bird.yml --gpu 1` to generate examples from captions in files listed in "./data/birds/example_filenames.txt". Results are saved to `DAMSMencoders/`.
- Change the `eval_*.yml` files to generate images from other pre-trained models.
- Input your own sentence in "./data/birds/example_captions.txt" if you wannt to generate images from customized sentences.
**Validation**
- To generate images for all captions in the validation dataset, change B_VALIDATION to True in the eval_*.yml. and then run `python main.py --cfg cfg/eval_bird.yml --gpu 1`
- We compute inception score for models trained on birds using [StackGAN-inception-model](https://github.com/hanzhanggit/StackGAN-inception-model).
- We compute inception score for models trained on coco using [improved-gan/inception_score](https://github.com/openai/improved-gan/tree/master/inception_score).
### Creating an API
[Evaluation code](eval) embedded into a callable containerized API is included in the `eval\` folder.
### Citing AttnGAN
If you find AttnGAN useful in your research, please consider citing:
```
@article{Tao18attngan,
author = {Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, Xiaodong He},
title = {AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks},
Year = {2018},
booktitle = {{CVPR}}
}
```
**Reference**
- [StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks](https://arxiv.org/abs/1710.10916) [[code]](https://github.com/hanzhanggit/StackGAN-v2)
- [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434) [[code]](https://github.com/carpedm20/DCGAN-tensorflow)
### References
- [Research Paper](https://arxiv.org/abs/1711.10485)
- [Explanation of the paper](https://www.youtube.com/watch?v=Epvh4EvznUA)
- [Python 3.x implementation - Tensorflow](https://github.com/taki0112/AttnGAN-Tensorflow)
- [Python 2.x implementation - PyTorch](https://github.com/taoxugit/AttnGAN)
#### Note: This is a rough Readme as I am quite overloaded with work right now, this Readme will be updated soon with all the details (results, benchmarks, training hardware, model configurations, etc) |