Spaces:
Runtime error
Runtime error
File size: 11,837 Bytes
9037361 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
from fastapi import FastAPI
import os
import json
import pandas as pd
import time
import phoenix as px
from phoenix.trace.langchain import OpenInferenceTracer, LangChainInstrumentor
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.callbacks import StdOutCallbackHandler
#from langchain.retrievers import KNNRetriever
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain.vectorstores import FAISS
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain import HuggingFaceHub
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from txtai.embeddings import Embeddings
# from txtai.pipeline import Extractor
# import pandas as pd
# import sqlite3
# import os
# NOTE - we configure docs_url to serve the interactive Docs at the root path
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
app = FastAPI(docs_url="/")
#phoenix setup
session = px.launch_app()
# If no exporter is specified, the tracer will export to the locally running Phoenix server
tracer = OpenInferenceTracer()
# If no tracer is specified, a tracer is constructed for you
LangChainInstrumentor(tracer).instrument()
print(session.url)
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
# embedding cache
store = LocalFileStore("./cache/")
# define embedder
core_embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings_model, store)
# define llm
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
#llm=HuggingFaceHub(repo_id="gpt2", model_kwargs={"temperature":1, "max_length":1000000})
handler = StdOutCallbackHandler()
# set global variable
vectorstore = None
retriever = None
def initialize_vectorstore():
webpage_loader = WebBaseLoader("https://www.tredence.com/case-studies/forecasting-app-installs-for-a-large-retailer-in-the-us").load()
webpage_chunks = _text_splitter(webpage_loader)
global vectorstore
global retriever
# store embeddings in vector store
vectorstore = FAISS.from_documents(webpage_chunks, embedder)
print("vector store initialized with sample doc")
# instantiate a retriever
retriever = vectorstore.as_retriever()
def _text_splitter(doc):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=600,
chunk_overlap=50,
length_function=len,
)
return text_splitter.transform_documents(doc)
def _load_docs(path: str):
load_doc = WebBaseLoader(path).load()
doc = _text_splitter(load_doc)
return doc
@app.get("/index/")
def get_domain_file_path(file_path: str):
print("file_path " ,file_path)
webpage_loader = _load_docs(file_path)
webpage_chunks = _text_splitter(webpage_loader)
# store embeddings in vector store
vectorstore.add_documents(webpage_chunks)
return "document loaded to vector store successfully!!"
def _prompt(question):
return f"""Answer following question using only the context below. Say 'Could not find answer with provided context' when question can't be answered.
Question: {question}
Context: """
class BasePromptContext:
def __init__(self):
self.variables_list = ["question","answer","context"]
self.base_template = """Please act as an impartial judge and evaluate the quality of the provided answer which attempts to answer the provided question based on a provided context.
And you'll need to submit your grading for the correctness, comprehensiveness and readability of the answer, using JSON format with the 2 items in parenthesis:
("score": [your score number for the correctness of the answer], "reasoning": [your one line step by step reasoning about the correctness of the answer])
Below is your grading rubric:
- Correctness: If the answer correctly answer the question, below are the details for different scores:
- Score 0: the answer is completely incorrect, doesn’t mention anything about the question or is completely contrary to the correct answer.
- For example, when asked “How to terminate a databricks cluster”, the answer is empty string, or content that’s completely irrelevant, or sorry I don’t know the answer.
- Score 4: the answer provides some relevance to the question and answer one aspect of the question correctly.
- Example:
- Question: How to terminate a databricks cluster
- Answer: Databricks cluster is a cloud-based computing environment that allows users to process big data and run distributed data processing tasks efficiently.
- Or answer: In the Databricks workspace, navigate to the "Clusters" tab. And then this is a hard question that I need to think more about it
- Score 7: the answer mostly answer the question but is missing or hallucinating on one critical aspect.
- Example:
- Question: How to terminate a databricks cluster”
- Answer: “In the Databricks workspace, navigate to the "Clusters" tab.
Find the cluster you want to terminate from the list of active clusters.
And then you’ll find a button to terminate all clusters at once”
- Score 10: the answer correctly answer the question and not missing any major aspect
- Example:
- Question: How to terminate a databricks cluster
- Answer: In the Databricks workspace, navigate to the "Clusters" tab.
Find the cluster you want to terminate from the list of active clusters.
Click on the down-arrow next to the cluster name to open the cluster details.
Click on the "Terminate" button. A confirmation dialog will appear. Click "Terminate" again to confirm the action.”
Provided question:
{question}
Provided answer:
{answer}
Provided context:
{context}
Please provide your grading for the correctness and explain you gave the particular grading"""
class Evaluater:
def __init__(self, item):
self.question = item["question"]
self.answer = item["answer"]
#self.domain = item["domain"]
self.context = item["context"]
self.llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
def get_prompt_template(self):
prompt = BasePromptContext()
template = prompt.base_template
varialbles = prompt.variables_list
eval_template = PromptTemplate(input_variables=varialbles, template=template)
return eval_template
def evaluate(self):
prompt = self.get_prompt_template().format(question = self.question, answer = self.answer, context = self.context)
score = self.llm(prompt)
return score
# Create extractor instance
def _create_evaluation_scenario(item):
score = Evaluater(item).evaluate()
return score
class HallucinatePromptContext:
def __init__(self):
self.variables_list = ["query","answer","context"]
self.base_template = """In this task, you will be presented with a query, a reference text and an answer. The answer is
generated to the question based on the reference text. The answer may contain false information, you
must use the reference text to determine if the answer to the question contains false information,
if the answer is a hallucination of facts. Your objective is to determine whether the reference text
contains factual information and is not a hallucination. A 'hallucination' in this context refers to
an answer that is not based on the reference text or assumes information that is not available in
the reference text. Your response should be a single word: either "factual" or "hallucinated", and
it should not include any other text or characters. "hallucinated" indicates that the answer
provides factually inaccurate information to the query based on the reference text. "factual"
indicates that the answer to the question is correct relative to the reference text, and does not
contain made up information. Please read the query and reference text carefully before determining
your response.
# Query: {query}
# Reference text: {context}
# Answer: {answer}
Is the answer above factual or hallucinated based on the query and reference text?"""
class HallucinatonEvaluater:
def __init__(self, item):
self.question = item["question"]
self.answer = item["answer"]
#self.domain = item["domain"]
self.context = item["context"]
self.llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})
def get_prompt_template(self):
prompt = HallucinatePromptContext()
template = prompt.base_template
varialbles = prompt.variables_list
eval_template = PromptTemplate(input_variables=varialbles, template=template)
return eval_template
def evaluate(self):
prompt = self.get_prompt_template().format(query = self.question, answer = self.answer, context = self.context)
score = self.llm(prompt)
return score
# Create extractor instance
def _create_evaluation_scenario(item):
score = Evaluater(item).evaluate()
return score
# Create extractor instance
def _create_hallucination_scenario(item):
score = HallucinatonEvaluater(item).evaluate()
return score
@app.get("/rag")
def rag( question: str, evaluate: bool):
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
callbacks=[handler],
return_source_documents=True
)
#response = chain("how tredence brought good insight?")
response = chain(question)
print(response["result"])
time.sleep(4)
df = px.active_session().get_spans_dataframe()
print(px.active_session())
print(px.active_session().get_spans_dataframe())
print(df.count())
df_sorted = df.sort_values(by='end_time',ascending=False)
model_input = json.loads(df_sorted[df_sorted["name"] == "LLMChain"]["attributes.input.value"][0])
context = model_input["context"]
print(context)
if evaluate:
score = _create_evaluation_scenario({
"question": question,
"answer": response['result'],
"context": context
})
else:
score = "Evaluation is Turned OFF"
return {"question": question, "answer": response['result'], "context": context, "score": score}
initialize_vectorstore()
@app.get("/trace")
def trace():
df = px.active_session().get_spans_dataframe().fillna('')
return df
@app.get("/hallucinate")
def trace(question: str, answer: str, context: str):
hallucination_score = _create_hallucination_scenario({
"question": question,
"answer": answer,
"context": context
}
)
return {"hallucination_score": hallucination_score}
'''
#import getpass
from pyngrok import ngrok, conf
#print("Enter your authtoken, which can be copied from https://dashboard.ngrok.com/auth")
conf.get_default().auth_token="2WJNWULs5bCOyJnV24WQYJEKod3_YQUbM5EGCp8sgE4aQvzi"
port = 37689
# Open a ngrok tunnel to the HTTP server
conf.get_default().monitor_thread = False
public_url = ngrok.connect(port).public_url
print(" * ngrok tunnel \"{}\" -> \"http://127.0.0.1:{}\"".format(public_url, port))
'''
|