File size: 2,176 Bytes
f17e759 d90a233 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# -*- coding: utf-8 -*-
"""Iris_Flower_Classifier.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1ddsKnOLQk_nPeF9zu0Qr9yTsvmg-0D8S
"""
import gradio as gr
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import make_pipeline
# Load the Iris dataset
iris = load_iris()
X = iris.data
y = iris.target
feature_names = iris.feature_names
target_names = iris.target_names
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create and train a RandomForest model
model = make_pipeline(StandardScaler(), RandomForestClassifier())
model.fit(X_train, y_train)
# Define the prediction function
def predict_iris(sepal_length, sepal_width, petal_length, petal_width):
feature_values = np.array([sepal_length, sepal_width, petal_length, petal_width]).reshape(1, -1)
prediction = model.predict(feature_values)
return target_names[prediction[0]]
# Create a Gradio interface
interface = gr.Interface(
fn=predict_iris,
inputs=[
gr.Slider(minimum=float(X[:, 0].min()), maximum=float(X[:, 0].max()), value=float(np.mean(X[:, 0])), label="Sepal Length (cm)"), # Changed 'default' to 'value'
gr.Slider(minimum=float(X[:, 1].min()), maximum=float(X[:, 1].max()), value=float(np.mean(X[:, 1])), label="Sepal Width (cm)"), # Changed 'default' to 'value'
gr.Slider(minimum=float(X[:, 2].min()), maximum=float(X[:, 2].max()), value=float(np.mean(X[:, 2])), label="Petal Length (cm)"), # Changed 'default' to 'value'
gr.Slider(minimum=float(X[:, 3].min()), maximum=float(X[:, 3].max()), value=float(np.mean(X[:, 3])), label="Petal Width (cm)") # Changed 'default' to 'value'
],
outputs="text",
title="Iris Flower Classifier",
description="Select the features of the iris flower to predict its species."
)
# Launch the interface
if __name__ == "__main__":
interface.launch(inline=False) |