File size: 4,412 Bytes
3fa2552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import soundfile as sf
import torch
import tqdm
from cached_path import cached_path

from model import DiT, UNetT
from model.utils import save_spectrogram

from model.utils_infer import load_vocoder, load_model, infer_process, remove_silence_for_generated_wav
from model.utils import seed_everything
import random
import sys


class F5TTS:
    def __init__(

        self,

        model_type="F5-TTS",

        ckpt_file="",

        vocab_file="",

        ode_method="euler",

        use_ema=True,

        local_path=None,

        device=None,

    ):
        # Initialize parameters
        self.final_wave = None
        self.target_sample_rate = 24000
        self.n_mel_channels = 100
        self.hop_length = 256
        self.target_rms = 0.1
        self.seed = -1

        # Set device
        self.device = device or (
            "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
        )

        # Load models
        self.load_vocoder_model(local_path)
        self.load_ema_model(model_type, ckpt_file, vocab_file, ode_method, use_ema)

    def load_vocoder_model(self, local_path):
        self.vocos = load_vocoder(local_path is not None, local_path, self.device)

    def load_ema_model(self, model_type, ckpt_file, vocab_file, ode_method, use_ema):
        if model_type == "F5-TTS":
            if not ckpt_file:
                ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
            model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
            model_cls = DiT
        elif model_type == "E2-TTS":
            if not ckpt_file:
                ckpt_file = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
            model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
            model_cls = UNetT
        else:
            raise ValueError(f"Unknown model type: {model_type}")

        self.ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file, ode_method, use_ema, self.device)

    def export_wav(self, wav, file_wave, remove_silence=False):
        sf.write(file_wave, wav, self.target_sample_rate)

        if remove_silence:
            remove_silence_for_generated_wav(file_wave)

    def export_spectrogram(self, spect, file_spect):
        save_spectrogram(spect, file_spect)

    def infer(

        self,

        ref_file,

        ref_text,

        gen_text,

        show_info=print,

        progress=tqdm,

        target_rms=0.1,

        cross_fade_duration=0.15,

        sway_sampling_coef=-1,

        cfg_strength=2,

        nfe_step=32,

        speed=1.0,

        fix_duration=None,

        remove_silence=False,

        file_wave=None,

        file_spect=None,

        seed=-1,

    ):
        if seed == -1:
            seed = random.randint(0, sys.maxsize)
        seed_everything(seed)
        self.seed = seed
        wav, sr, spect = infer_process(
            ref_file,
            ref_text,
            gen_text,
            self.ema_model,
            show_info=show_info,
            progress=progress,
            target_rms=target_rms,
            cross_fade_duration=cross_fade_duration,
            nfe_step=nfe_step,
            cfg_strength=cfg_strength,
            sway_sampling_coef=sway_sampling_coef,
            speed=speed,
            fix_duration=fix_duration,
            device=self.device,
        )

        if file_wave is not None:
            self.export_wav(wav, file_wave, remove_silence)

        if file_spect is not None:
            self.export_spectrogram(spect, file_spect)

        return wav, sr, spect


if __name__ == "__main__":
    f5tts = F5TTS()

    wav, sr, spect = f5tts.infer(
        ref_file="tests/ref_audio/test_en_1_ref_short.wav",
        ref_text="some call me nature, others call me mother nature.",
        gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
        file_wave="tests/out.wav",
        file_spect="tests/out.png",
        seed=-1,  # random seed = -1
    )

    print("seed :", f5tts.seed)