Spaces:
Runtime error
Runtime error
File size: 8,490 Bytes
ea6afa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import plotly.graph_objects as go
import textwrap
import re
from collections import defaultdict
def apply_lcs_numbering(sentence, common_grams):
"""Apply LCS numbering based on common grams."""
for idx, lcs in common_grams:
sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence)
return sentence
def highlight_words(sentence, color_map):
"""Highlight specified words in a sentence with corresponding colors."""
for word, color in color_map.items():
sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
return sentence
def clean_and_wrap_nodes(nodes, highlight_info):
"""Clean nodes by removing labels and wrap text for display."""
global_color_map = dict(highlight_info)
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
return ['<br>'.join(textwrap.wrap(node, width=55)) for node in highlighted_nodes]
def get_levels_and_edges(nodes):
"""Determine levels and create edges dynamically."""
levels = {}
edges = []
for i, node in enumerate(nodes):
level = int(node.split()[-1][1])
levels[i] = level
# Create edges from level 0 to level 1 nodes
root_node = next(i for i, level in levels.items() if level == 0)
edges.extend((root_node, i) for i, level in levels.items() if level == 1)
return levels, edges
def calculate_positions(levels):
"""Calculate x, y positions for each node based on levels."""
positions = {}
level_heights = defaultdict(int)
y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
for node, level in levels.items():
level_heights[level] += 1
x_gap = 2
l1_y_gap = 10
positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
y_offsets[level] += 1
return positions
def color_highlighted_words(node, color_map):
"""Highlight words in a wrapped node string."""
parts = re.split(r'(\{\{.*?\}\})', node)
colored_parts = [
f"<span style='color: {color_map.get(match.group(1), 'black')};'>{match.group(1)}</span>"
if (match := re.match(r'\{\{(.*?)\}\}', part))
else part
for part in parts
]
return ''.join(colored_parts)
def generate_subplot(paraphrased_sentence, scheme_sentences, highlight_info, common_grams, subplot_number):
"""Generate a subplot based on the input sentences and highlight info."""
# Combine nodes into one list with appropriate labels
nodes = [paraphrased_sentence + ' L0'] + [s + ' L1' for s in scheme_sentences]
# Apply LCS numbering and clean/wrap nodes
nodes = [apply_lcs_numbering(node, common_grams) for node in nodes]
wrapped_nodes = clean_and_wrap_nodes(nodes, highlight_info)
# Get levels and edges
levels, edges = get_levels_and_edges(nodes)
positions = calculate_positions(levels)
# Create figure
fig = go.Figure()
# Add nodes and edges to the figure
for i, node in enumerate(wrapped_nodes):
colored_node = color_highlighted_words(node, dict(highlight_info))
x, y = positions[i]
fig.add_trace(go.Scatter(
x=[-x], # Reflect the x coordinate
y=[y],
mode='markers',
marker=dict(size=10, color='blue'),
hoverinfo='none'
))
fig.add_annotation(
x=-x, # Reflect the x coordinate
y=y,
text=colored_node,
showarrow=False,
xshift=15,
align="center",
font=dict(size=12),
bordercolor='black',
borderwidth=1,
borderpad=2,
bgcolor='white',
width=300,
height=120
)
# Add edges and edge annotations
edge_texts = [
"Highest Entropy Masking", "Pseudo-random Masking", "Random Masking",
"Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling",
"Inverse Transform Sampling", "Greedy Sampling", "Temperature Sampling",
"Exponential Minimum Sampling", "Inverse Transform Sampling",
"Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling",
"Inverse Transform Sampling"
]
for i, edge in enumerate(edges):
x0, y0 = positions[edge[0]]
x1, y1 = positions[edge[1]]
fig.add_trace(go.Scatter(
x=[-x0, -x1], # Reflect the x coordinates
y=[y0, y1],
mode='lines',
line=dict(color='black', width=1)
))
# Add text annotation above the edge
mid_x = (-x0 + -x1) / 2
mid_y = (y0 + y1) / 2
fig.add_annotation(
x=mid_x,
y=mid_y + 0.8, # Adjust y position to shift text upwards
text=edge_texts[i], # Use the text specific to this edge
showarrow=False,
font=dict(size=12),
align="center"
)
fig.update_layout(
showlegend=False,
margin=dict(t=20, b=20, l=20, r=20),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
width=1435,
height=1000
)
return fig
def generate_subplot1(paraphrased_sentence, scheme_sentences, highlight_info, common_grams):
return generate_subplot(paraphrased_sentence, scheme_sentences, highlight_info, common_grams, subplot_number=1)
def generate_subplot2(scheme_sentences, sampled_sentence, highlight_info, common_grams):
nodes = scheme_sentences + [s + ' L1' for s in sampled_sentence]
for i in range(len(scheme_sentences)):
nodes[i] += ' L0' # Reassign levels
# Apply LCS numbering and clean/wrap nodes
nodes = [apply_lcs_numbering(node, common_grams) for node in nodes]
wrapped_nodes = clean_and_wrap_nodes(nodes, highlight_info)
# Get levels and edges
levels, edges = get_levels_and_edges(nodes)
positions = calculate_positions(levels)
# Create figure
fig2 = go.Figure()
# Add nodes and edges to the figure
for i, node in enumerate(wrapped_nodes):
colored_node = color_highlighted_words(node, dict(highlight_info))
x, y = positions[i]
fig2.add_trace(go.Scatter(
x=[-x], # Reflect the x coordinate
y=[y],
mode='markers',
marker=dict(size=10, color='blue'),
hoverinfo='none'
))
fig2.add_annotation(
x=-x, # Reflect the x coordinate
y=y,
text=colored_node,
showarrow=False,
xshift=15,
align="center",
font=dict(size=12),
bordercolor='black',
borderwidth=1,
borderpad=2,
bgcolor='white',
width=450,
height=65
)
# Add edges and text above each edge
edge_texts = [
"Highest Entropy Masking", "Pseudo-random Masking", "Random Masking",
"Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling",
"Inverse Transform Sampling", "Greedy Sampling", "Temperature Sampling",
"Exponential Minimum Sampling", "Inverse Transform Sampling",
"Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling",
"Inverse Transform Sampling"
]
for i, edge in enumerate(edges):
x0, y0 = positions[edge[0]]
x1, y1 = positions[edge[1]]
fig2.add_trace(go.Scatter(
x=[-x0, -x1], # Reflect the x coordinates
y=[y0, y1],
mode='lines',
line=dict(color='black', width=1)
))
# Add text annotation above the edge
mid_x = (-x0 + -x1) / 2
mid_y = (y0 + y1) / 2
fig2.add_annotation(
x=mid_x,
y=mid_y + 0.8, # Adjust y position to shift text upwards
text=edge_texts[i], # Use the text specific to this edge
showarrow=False,
font=dict(size=12),
align="center"
)
fig2.update_layout(
showlegend=False,
margin=dict(t=20, b=20, l=20, r=20),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
width=1435,
height=1000
)
return fig2
|