Spaces:
Sleeping
Sleeping
File size: 4,597 Bytes
6fb2f90 449b9ac dbd2a18 9b2c5e1 aed0d09 dbd2a18 d00769c 6492b12 aed0d09 24f4b49 f7b8e0e dbd2a18 c3d8605 dbd2a18 aca98af 6492b12 90ff42e aca98af 449b9ac 6492b12 8978982 fa09b4a 8978982 fa09b4a 8978982 dbd2a18 8978982 d00769c d3127bb dbd2a18 8978982 d3127bb 6492b12 d00769c d3127bb 8978982 dbd2a18 449b9ac f504910 449b9ac 061bb0f 8978982 061bb0f 7ea4790 8978982 6492b12 8978982 6492b12 dbd2a18 6492b12 dbd2a18 0c96397 6492b12 8978982 7838123 dbd2a18 8978982 408a665 dbd2a18 b30ea65 dbd2a18 ad84640 dbd2a18 d00769c dbd2a18 6492b12 dbd2a18 8978982 dbd2a18 20ca536 dbd2a18 6492b12 8978982 408a665 8978982 173d15f 8978982 60b0ce7 173d15f 60b0ce7 173d15f 43b1616 8978982 dbd2a18 173d15f dbd2a18 173d15f 6fb2f90 449b9ac 8978982 dbd2a18 8978982 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import netron
import threading
import gradio as gr
import os
from PIL import Image
import cv2
import numpy as np
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s
# Sample images directory
sample_images = {
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
"""Load a sample image based on user selection."""
image_path = sample_images.get(sample_name)
if image_path and os.path.exists(image_path):
return Image.open(image_path)
return None
def process_image(sample_choice, uploaded_image, yolo_versions):
"""Process the image using selected YOLO models."""
# Load sample or uploaded image
if uploaded_image is not None:
image = uploaded_image
else:
image = load_sample_image(sample_choice)
# Preprocess image
image = np.array(image)
image = cv2.resize(image, (640, 640))
result_images = []
# Apply selected models
for yolo_version in yolo_versions:
if yolo_version == "yolov5":
result_images.append(xai_yolov5(image))
elif yolo_version == "yolov8s":
result_images.append(xai_yolov8s(image))
else:
result_images.append((Image.fromarray(image), f"{yolo_version} not implemented."))
return result_images
def view_model(selected_models):
"""Generate Netron visualization for the selected models."""
netron_html = ""
for model in selected_models:
if model == "yolov5":
netron_html = f"""
<iframe
src="https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx"
width="100%"
height="800"
frameborder="0">
</iframe>
"""
return netron_html if netron_html else "<p>No valid models selected for visualization.</p>"
# Custom CSS for styling (optional)
custom_css = """
#run_button {
background-color: purple;
color: white;
width: 120px;
border-radius: 5px;
font-size: 14px;
}
"""
with gr.Blocks(css=custom_css) as interface:
gr.Markdown("# NeuralVista: Visualize Object Detection of Your Models")
# Default sample
default_sample = "Sample 1"
with gr.Row():
# Left side: Sample selection and image upload
with gr.Column():
sample_selection = gr.Radio(
choices=list(sample_images.keys()),
label="Select a Sample Image",
value=default_sample,
)
upload_image = gr.Image(
label="Upload an Image",
type="pil",
)
selected_models = gr.CheckboxGroup(
choices=["yolov5", "yolov8s"],
value=["yolov5"],
label="Select Model(s)",
)
run_button = gr.Button("Run", elem_id="run_button")
with gr.Column():
sample_display = gr.Image(
value=load_sample_image(default_sample),
label="Selected Sample Image",
)
# Results and visualization
with gr.Row():
result_gallery = gr.Gallery(
label="Results",
rows=1,
height=500,
)
netron_display = gr.HTML(label="Netron Visualization")
# Update sample image
sample_selection.change(
fn=load_sample_image,
inputs=sample_selection,
outputs=sample_display,
)
# Multi-threaded processing
def run_both(sample_choice, uploaded_image, selected_models):
results = []
netron_html = ""
# Thread to process the image
def process_thread():
nonlocal results
results = process_image(sample_choice, uploaded_image, selected_models)
# Thread to generate Netron visualization
def netron_thread():
nonlocal netron_html
netron_html = view_model(selected_models)
# Launch threads
t1 = threading.Thread(target=process_thread)
t2 = threading.Thread(target=netron_thread)
t1.start()
t2.start()
t1.join()
t2.join()
return results, netron_html
# Run button click
run_button.click(
fn=run_both,
inputs=[sample_selection, upload_image, selected_models],
outputs=[result_gallery, netron_display],
)
# Launch Gradio interface
if __name__ == "__main__":
interface.launch(share=True)
|