Spaces:
Sleeping
Sleeping
File size: 6,474 Bytes
6fb2f90 449b9ac dbd2a18 9b2c5e1 aed0d09 dbd2a18 d00769c 6492b12 aed0d09 24f4b49 f7b8e0e dbd2a18 c3d8605 dbd2a18 aca98af 6492b12 90ff42e aca98af 1e3b3d6 6492b12 8978982 fa09b4a 8978982 fa09b4a 8978982 dbd2a18 8978982 d00769c d3127bb dbd2a18 8978982 d3127bb 1e3b3d6 d00769c d3127bb 8978982 449b9ac f504910 449b9ac 061bb0f 8978982 061bb0f 7ea4790 8978982 6492b12 8978982 6492b12 dbd2a18 24f7ea3 188ba59 355d6d4 a3ee2cf 188ba59 355d6d4 111100d 634cc88 a3ee2cf 355d6d4 111100d dbd2a18 3f486c1 6492b12 8978982 7838123 dbd2a18 8978982 408a665 dbd2a18 b30ea65 dbd2a18 ad84640 dbd2a18 d00769c dbd2a18 6492b12 dbd2a18 8978982 634cc88 dbd2a18 4329d33 9143e1a 4329d33 54af7c0 dbd2a18 13264bc 6492b12 8978982 408a665 634cc88 52d3078 8ff3f84 327d931 9f08712 13264bc 52d3078 8978982 173d15f 2872d33 173d15f 2872d33 1e3b3d6 173d15f 8978982 60b0ce7 173d15f 5c82496 09b4bbd 58ddcfb 43b1616 8978982 8e67d2a dbd2a18 173d15f 2872d33 52d3078 6fb2f90 449b9ac 8978982 dbd2a18 8978982 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import netron
import threading
import gradio as gr
import os
from PIL import Image
import cv2
import numpy as np
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s
# Sample images directory
sample_images = {
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
"""Load a sample image based on user selection."""
image_path = sample_images.get(sample_name)
if image_path and os.path.exists(image_path):
return Image.open(image_path)
return None
def process_image(sample_choice, uploaded_image, yolo_versions, target_lyr = -5, n_components = 8):
"""Process the image using selected YOLO models."""
# Load sample or uploaded image
if uploaded_image is not None:
image = uploaded_image
else:
image = load_sample_image(sample_choice)
# Preprocess image
image = np.array(image)
image = cv2.resize(image, (640, 640))
result_images = []
# Apply selected models
for yolo_version in yolo_versions:
if yolo_version == "yolov5":
result_images.append(xai_yolov5(image, target_lyr = -5, n_components = 8))
elif yolo_version == "yolov8s":
result_images.append(xai_yolov8s(image))
else:
result_images.append((Image.fromarray(image), f"{yolo_version} not implemented."))
return result_images
def view_model(selected_models):
"""Generate Netron visualization for the selected models."""
netron_html = ""
for model in selected_models:
if model == "yolov5":
netron_html = f"""
<iframe
src="https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx"
width="100%"
height="800"
frameborder="0">
</iframe>
"""
return netron_html if netron_html else "<p>No valid models selected for visualization.</p>"
custom_css = """
#custom-row {
margin: 0 !important;
padding: 0 !important;
height: fit-content !important;
display: flex !important;
justify-content: center !important;
}
#highlighted-text {
color: blue !important;
font-size: 32px !important;
font-weight: bold !important;
}
"""
# Then in the Gradio interface:
with gr.Blocks(css=custom_css) as interface:
gr.Markdown("""
## NeuralVista
<p>Welcome to <span class="highlighted-text">NeuralVista</span>, a powerful tool designed to help you visualize object detection models in action.
With the integration of state-of-the-art YOLO models, you can explore the performance of object detection algorithms on various images.</p>
<p>Whether you're looking to analyze pre-existing samples or upload your own images, NeuralVista allows you to experiment with different YOLO versions,
providing you with valuable insights into how these models interpret and detect objects. Additionally, you can view deep feature factorization outputs
and gain a deeper understanding of model behavior at different layers, all within an intuitive interface.</p>
""")
# Default sample
default_sample = "Sample 1"
with gr.Row():
# Left side: Sample selection and image upload
with gr.Column():
sample_selection = gr.Radio(
choices=list(sample_images.keys()),
label="Select a Sample Image",
value=default_sample,
)
upload_image = gr.Image(
label="Upload an Image",
type="pil",
)
selected_models = gr.CheckboxGroup(
choices=["yolov5", "yolov8s"],
value=["yolov5"],
label="Select Model(s)",
)
run_button = gr.Button("Run", elem_id="run_button")
with gr.Column():
sample_display = gr.Image(
value=load_sample_image(default_sample),
label="Selected Sample Image",
)
# Results and visualization
with gr.Row(elem_classes="custom-row"):
result_gallery = gr.Gallery(
label="Results",
rows=1,
height="auto", # Adjust height automatically based on content
columns=1 ,
object_fit="contain"
)
netron_display = gr.HTML(label="Netron Visualization")
# Update sample image
sample_selection.change(
fn=load_sample_image,
inputs=sample_selection,
outputs=sample_display,
)
with gr.Row(elem_classes="custom-row"):
dff_gallery = gr.Gallery(
label="Deep Feature Factorization",
rows=2, # 8 rows
columns=4, # 1 image per row
object_fit="fit",
height="auto" # Adjust as needed
)
# Multi-threaded processing
def run_both(sample_choice, uploaded_image, selected_models):
results = []
netron_html = ""
# Thread to process the image
def process_thread():
nonlocal results
target_lyr = -5
n_components = 8
results = process_image(sample_choice, uploaded_image, selected_models, target_lyr = -5, n_components = 8)
# Thread to generate Netron visualization
def netron_thread():
nonlocal netron_html
netron_html = view_model(selected_models)
# Launch threads
t1 = threading.Thread(target=process_thread)
t2 = threading.Thread(target=netron_thread)
t1.start()
t2.start()
t1.join()
t2.join()
image1, text, image2 = results[0]
if isinstance(image2, list):
# Check if image2 contains exactly 8 images
if len(image2) == 8:
print("image2 contains 8 images.")
else:
print("Warning: image2 does not contain exactly 8 images.")
else:
print("Error: image2 is not a list of images.")
return [(image1, text)], netron_html, image2
# Run button click
run_button.click(
fn=run_both,
inputs=[sample_selection, upload_image, selected_models],
outputs=[result_gallery, netron_display, dff_gallery],
)
# Launch Gradio interface
if __name__ == "__main__":
interface.launch(share=True)
|