File size: 5,635 Bytes
60af537
57419d8
9b2c5e1
57419d8
 
 
 
d4cb7c6
d3127bb
57419d8
 
 
 
 
 
 
6c34a8c
c5224aa
57419d8
 
 
 
d3127bb
c3d8605
f7b8e0e
 
c3d8605
aca98af
90ff42e
 
 
aca98af
 
90ff42e
f504910
aca98af
740153b
aca98af
 
 
1cc8cac
aca98af
 
 
1cc8cac
aca98af
90ff42e
920afea
aca98af
 
66370da
f504910
aca98af
 
 
26e2298
920afea
e2db038
920afea
 
f504910
d3127bb
 
 
20ca536
d3127bb
 
 
 
fa09b4a
 
 
 
 
 
d3127bb
 
 
 
 
 
 
 
 
 
 
f504910
fa09b4a
1a11002
20ca536
f504910
63152db
20ca536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7991981
20ca536
 
 
 
 
 
70f0887
f504910
 
20ca536
f504910
 
723358f
1a11002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
980264d
 
 
 
 
fa09b4a
980264d
1a11002
 
 
 
 
 
 
 
 
 
fa09b4a
1a11002
 
 
fa09b4a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import cv2
import os
from PIL import Image
import torchvision.transforms as transforms
import gradio as gr
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s
"""
def process_image(image, yolo_versions=["yolov5"]):
    image = np.array(image)
    image = cv2.resize(image, (640, 640))
    result_images = []
    for yolo_version in yolo_versions:
        if yolo_version == "yolov5":
            result_images.append(xai_yolov5(image)) 
        elif yolo_version == "yolov8s":
            result_images.append(xai_yolov8s(image))
        else:
            result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
    return result_images

"""
sample_images = {
    "Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
    "Sample 2":  os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
    image_path = sample_images.get(sample_name)
    if image_path and os.path.exists(image_path):
        return Image.open(image_path)
    return None

default_sample_image = load_sample_image("Sample 1")
"""
with gr.Blocks() as interface:
    gr.Markdown("# XAI: Upload an image to visualize object detection of your models..")
    gr.Markdown("Upload an image or select a sample image to visualize object detection.")

    with gr.Row():
        uploaded_image = gr.Image(type="pil", label="Upload an Image")
        sample_selection = gr.Dropdown(
            choices=list(sample_images.keys()),
            label="Select a Sample Image",
            type="value",
        )
        sample_display = gr.Image(label="Sample Image Preview", value=default_sample_image)
        sample_selection.change(fn=load_sample_image, inputs=sample_selection, outputs=sample_display)

    selected_models = gr.CheckboxGroup(
        choices=["yolov5", "yolov8s"],
        value=["yolov5"], 
        label="Select Model(s)",
    )
    result_gallery = gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500)
    gr.Button("Run").click(
        fn=process_image,
        inputs=[uploaded_image, selected_models],
        outputs=result_gallery,
    )
"""
def load_sample_image(choice):
    if choice in sample_images:
        image_path = sample_images[choice]
        return cv2.imread(image_path)[:, :, ::-1]  
    else:
        raise ValueError("Invalid sample selection.")


def process_image(sample_choice, uploaded_image, yolo_versions=["yolov5"]):
    if uploaded_image is not None:
        image = uploaded_image  # Use the uploaded image
    else:
        # Otherwise, use the selected sample image
        image = load_sample_image(sample_choice)
    image = np.array(image)
    image = cv2.resize(image, (640, 640))
    result_images = []
    for yolo_version in yolo_versions:
        if yolo_version == "yolov5":
            result_images.append(xai_yolov5(image)) 
        elif yolo_version == "yolov8s":
            result_images.append(xai_yolov8s(image))
        else:
            result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
    return result_images


"""
import gradio as gr
with gr.Blocks() as interface:
    gr.Markdown("# XAI: Visualize Object Detection of Your Models")
    gr.Markdown("Select a sample image to visualize object detection.")
    default_sample = "Sample 1"
    with gr.Row():
        sample_selection = gr.Radio(
            choices=list(sample_images.keys()),
            label="Select a Sample Image",
            type="value",
            value=default_sample,  # Set default selection
        )
        sample_display = gr.Image(
            value=load_sample_image(default_sample),  
            label="Selected Sample Image",
        )
    sample_selection.change(
        fn=load_sample_image,
        inputs=sample_selection,
        outputs=sample_display,
    )

    selected_models = gr.CheckboxGroup(
        choices=["yolov5", "yolov8s"],
        value=["yolov5"],
        label="Select Model(s)",
    )
    result_gallery = gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500)

    gr.Button("Run").click(
        fn=process_image,
        inputs=[sample_selection, selected_models],
        outputs=result_gallery,
    )

interface.launch()
"""
with gr.Blocks() as interface:
    gr.Markdown("# XAI: Visualize Object Detection of Your Models")
    gr.Markdown("Select a sample image to visualize object detection.")
    default_sample = "Sample 1"
    with gr.Row():
        sample_selection = gr.Radio(
            choices=list(sample_images.keys()),
            label="Select a Sample Image",
            type="value",
            value=default_sample,  # Set default selection
        )
        sample_display = gr.Image(
            value=load_sample_image(default_sample),  
            label="Selected Sample Image",
        )
    sample_selection.change(
        fn=load_sample_image,
        inputs=sample_selection,
        outputs=sample_display,
    )

    # Adding an upload placeholder
    gr.Markdown("**Or upload your own image:**")
    upload_image = gr.Image(
        label="Upload an Image",
        type="filepath",  # Corrected type for file path compatibility
    )

    selected_models = gr.CheckboxGroup(
        choices=["yolov5", "yolov8s"],
        value=["yolov5"],
        label="Select Model(s)",
    )
    result_gallery = gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500)

    gr.Button("Run").click(
        fn=process_image,
        inputs=[sample_selection, upload_image, selected_models],  # Include both options
        outputs=result_gallery,
    )

interface.launch(share=True)