Spaces:
Sleeping
Sleeping
import torch | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import torchvision.transforms as transforms | |
from pytorch_grad_cam import EigenCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image | |
import gradio as gr | |
import os | |
# Global Color Palette | |
COLORS = np.random.uniform(0, 255, size=(80, 3)) | |
def parse_detections(results): | |
detections = results.pandas().xyxy[0].to_dict() | |
boxes, colors, names, classes = [], [], [], [] | |
for i in range(len(detections["xmin"])): | |
confidence = detections["confidence"][i] | |
if confidence < 0.2: | |
continue | |
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i]) | |
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i]) | |
name, category = detections["name"][i], int(detections["class"][i]) | |
boxes.append((xmin, ymin, xmax, ymax)) | |
colors.append(COLORS[category]) | |
names.append(name) | |
classes.append(category) | |
return boxes, colors, names, classes | |
def draw_detections(boxes, colors, names, classes, img): | |
for box, color, name, cls in zip(boxes, colors, names, classes): | |
xmin, ymin, xmax, ymax = box | |
label = f"{cls}: {name}" # Combine class ID and name | |
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) | |
cv2.putText( | |
img, label, (xmin, ymin - 5), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, | |
lineType=cv2.LINE_AA | |
) | |
return img | |
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes): | |
cam = EigenCAM(model, target_layers) | |
grayscale_cam = cam(tensor)[0, :, :] | |
img_float = np.float32(rgb_img) / 255 | |
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True) | |
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32) | |
for x1, y1, x2, y2 in boxes: | |
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy()) | |
renormalized_cam = scale_cam_image(renormalized_cam) | |
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True) | |
return cam_image, renormalized_cam_image | |
def xai_yolov5(image): | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) | |
model.eval() | |
model.cpu() | |
target_layers = [model.model.model.model[-2]] # Grad-CAM target layer | |
# Run YOLO detection | |
results = model([image]) | |
boxes, colors, names, classes = parse_detections(results) | |
detections_img = draw_detections(boxes, colors, names,classes, image.copy()) | |
# Prepare input tensor for Grad-CAM | |
img_float = np.float32(image) / 255 | |
transform = transforms.ToTensor() | |
tensor = transform(img_float).unsqueeze(0) | |
# Grad-CAM visualization | |
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes) | |
# Combine results | |
final_image = np.hstack((image, detections_img, renormalized_cam_image)) | |
caption = "Results using YOLOv5" | |
return Image.fromarray(final_image), caption | |
""" | |
import yaml | |
import torch | |
import warnings | |
warnings.filterwarnings('ignore') | |
from PIL import Image | |
import numpy as np | |
import requests | |
import cv2 | |
import torch | |
from pytorch_grad_cam import DeepFeatureFactorization | |
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image | |
from pytorch_grad_cam.utils.image import deprocess_image, show_factorization_on_image | |
# Check if CUDA is available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
mean = [0.485, 0.456, 0.406] # Mean for RGB channels | |
std = [0.229, 0.224, 0.225] # Standard deviation for RGB channels | |
# Load YOLOv5 model and move it to the appropriate device | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device) | |
print(f"Loaded YOLOv5 model on {device}") | |
def create_labels(concept_scores, top_k=2): | |
yolov5_categories_url = \ | |
"https://github.com/ultralytics/yolov5/raw/master/data/coco128.yaml" # URL to the YOLOv5 categories file | |
yaml_data = requests.get(yolov5_categories_url).text | |
labels = yaml.safe_load(yaml_data)['names'] # Parse the YAML file to get class names | |
concept_categories = np.argsort(concept_scores, axis=1)[:, ::-1][:, :top_k] | |
concept_labels_topk = [] | |
for concept_index in range(concept_categories.shape[0]): | |
categories = concept_categories[concept_index, :] | |
concept_labels = [] | |
for category in categories: | |
score = concept_scores[concept_index, category] | |
label = f"{labels[category]}:{score:.2f}" | |
concept_labels.append(label) | |
concept_labels_topk.append("\n".join(concept_labels)) | |
return concept_labels_topk | |
def get_image_from_url(url, device): | |
img = np.array(Image.open(os.path.join(os.getcwd(), "data/xai/sample1.jpeg"))) | |
img = cv2.resize(img, (640, 640)) | |
rgb_img_float = np.float32(img) /255.0 | |
input_tensor = torch.from_numpy(rgb_img_float).permute(2, 0, 1).unsqueeze(0).to(device) | |
return img, rgb_img_float, input_tensor | |
def visualize_image(model, img_url, n_components=20, top_k=1, lyr_idx = 2): | |
img, rgb_img_float, input_tensor = get_image_from_url(img_url, device) | |
# Specify the target layer for DeepFeatureFactorization (e.g., YOLO's backbone) | |
target_layer = model.model.model.model[-lyr_idx] # Select a feature extraction layer | |
dff = DeepFeatureFactorization(model=model.model, target_layer=target_layer) | |
# Run DFF on the input tensor | |
concepts, batch_explanations = dff(input_tensor, n_components) | |
# Softmax normalization | |
concept_outputs = torch.softmax(torch.from_numpy(concepts), axis=-1).numpy() | |
concept_label_strings = create_labels(concept_outputs, top_k=top_k) | |
# Visualize explanations | |
visualization = show_factorization_on_image(rgb_img_float, | |
batch_explanations[0], | |
image_weight=0.2, | |
concept_labels=concept_label_strings) | |
import matplotlib.pyplot as plt | |
plt.imshow(visualization) | |
plt.savefig("test" + str(lyr_idx) + ".png") | |
result = np.hstack((img, visualization)) | |
# Resize for visualization | |
if result.shape[0] > 500: | |
result = cv2.resize(result, (result.shape[1]//4, result.shape[0]//4)) | |
return result | |
# Test with images | |
for indx in range(2,12): | |
Image.fromarray(visualize_image(model, | |
"https://github.com/jacobgil/pytorch-grad-cam/blob/master/examples/both.png?raw=true", lyr_idx = indx)) | |
""" |